-
Previous Article
On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line
- CPAA Home
- This Issue
-
Next Article
Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains
Positive solutions for Robin problems with general potential and logistic reaction
1. | Department of Mathematics, Missouri State University, Springeld, MO 65804 |
2. | Department of Mathematics, National Technical University, Zografou Campus, Athens 15780 |
References:
[1] |
Memoirs, AMS, vol. 196, no. 905, 2008.
doi: 10.1090/memo/0915. |
[2] |
Comm. Pure. Appl. Anal., 13 (2014), 1075-1086.
doi: 10.3934/cpaa.2014.13.1075. |
[3] |
Ann. Mat. Pura Appl., 193 (2013), 1-21.
doi: 10.1007/s10231-012-0263-0. |
[4] |
Discrete Contin. Dynam. Systems, 33 (2013), 123-140. |
[5] |
Discrete Contin. Dynam. Systems, 35 (2015), 99-116.
doi: 10.3934/dcds.2015.35.99. |
[6] |
Acta Math. Sinica, 22 (2006), 665-670.
doi: 10.1007/s10114-005-0696-0. |
[7] |
Discrete Contin. Dynam. Systems, 24 (2009), 405-440.
doi: 10.3934/dcds.2009.24.405. |
[8] |
Comm. Pure. Appl. Anal., 9 (2010), 1507-1527.
doi: 10.3934/cpaa.2010.9.1507. |
[9] |
Chapman & Hall/CRC, Boca Raton, 2006. |
[10] |
Discrete Contin. Dynam. Systems, 34 (2014), 2037-2060. |
[11] |
Math. Biosci., 33 (1977), 35-49. |
[12] |
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[13] |
Discrete Contin. Dynam. Systems, 35 (2015), 4859-4887.
doi: 10.3934/dcds.2015.35.4859. |
[14] |
Funkcialaj Ekvacioj, 55 (2012), 1-15.
doi: 10.1619/fesi.55.1. |
[15] |
Annali Math. Pura Appl., 192 (2013), 297-315.
doi: 10.1007/s10231-011-0224-z. |
[16] |
Discrete Contin. Dynam. Systems, 35 (2015), 3087-3102.
doi: 10.3934/dcds.2015.35.3087. |
[17] |
Israel J. Math., 201 (2014), 761-796.
doi: 10.1007/s11856-014-1050-y. |
[18] |
Contemp. Math., 595 (2013), 293-315.
doi: 10.1090/conm/595/11801. |
[19] |
Revista Mat. Complutense, 19 (2016), 91-126.
doi: 10.1007/s13163-015-0181-y. |
[20] |
J. Diff. Equas., 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[21] |
Trans. Amer. Math. Soc., 367 (2015), 8723-8756.
doi: 10.1090/S0002-9947-2014-06518-5. |
[22] |
Discrete Contin. Dynam. Systems, 35 (2015), 5003-5036
doi: 10.3934/dcds.2015.35.5003. |
[23] |
Forum Math., doi: 101515/forum-2-12-0042.
doi: 10.1515/forum-2012-0042. |
[24] |
Discrete Contin. Dynam. Systems, 34 (2014), 2657-2667.
doi: 10.3934/dcds.2014.34.2657. |
[25] |
Discrete Contin. Dynam. Systems, 34 (2014), 761-787. |
[26] |
Proc. Amer. Math. Soc., 129 (2001), 433-441.
doi: 10.1090/S0002-9939-00-05723-3. |
[27] |
J. Diff. Equas., 173 (2001), 138-144.
doi: 10.1006/jdeq.2000.3914. |
[28] |
J. Diff. Equas., 93 (1991), 283-310.
doi: 10.1016/0022-0396(91)90014-Z. |
[29] |
Discrete Contin. Dynam. Systems, 34 (2014), 4947-4966.
doi: 10.3934/dcds.2014.34.4947. |
show all references
References:
[1] |
Memoirs, AMS, vol. 196, no. 905, 2008.
doi: 10.1090/memo/0915. |
[2] |
Comm. Pure. Appl. Anal., 13 (2014), 1075-1086.
doi: 10.3934/cpaa.2014.13.1075. |
[3] |
Ann. Mat. Pura Appl., 193 (2013), 1-21.
doi: 10.1007/s10231-012-0263-0. |
[4] |
Discrete Contin. Dynam. Systems, 33 (2013), 123-140. |
[5] |
Discrete Contin. Dynam. Systems, 35 (2015), 99-116.
doi: 10.3934/dcds.2015.35.99. |
[6] |
Acta Math. Sinica, 22 (2006), 665-670.
doi: 10.1007/s10114-005-0696-0. |
[7] |
Discrete Contin. Dynam. Systems, 24 (2009), 405-440.
doi: 10.3934/dcds.2009.24.405. |
[8] |
Comm. Pure. Appl. Anal., 9 (2010), 1507-1527.
doi: 10.3934/cpaa.2010.9.1507. |
[9] |
Chapman & Hall/CRC, Boca Raton, 2006. |
[10] |
Discrete Contin. Dynam. Systems, 34 (2014), 2037-2060. |
[11] |
Math. Biosci., 33 (1977), 35-49. |
[12] |
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[13] |
Discrete Contin. Dynam. Systems, 35 (2015), 4859-4887.
doi: 10.3934/dcds.2015.35.4859. |
[14] |
Funkcialaj Ekvacioj, 55 (2012), 1-15.
doi: 10.1619/fesi.55.1. |
[15] |
Annali Math. Pura Appl., 192 (2013), 297-315.
doi: 10.1007/s10231-011-0224-z. |
[16] |
Discrete Contin. Dynam. Systems, 35 (2015), 3087-3102.
doi: 10.3934/dcds.2015.35.3087. |
[17] |
Israel J. Math., 201 (2014), 761-796.
doi: 10.1007/s11856-014-1050-y. |
[18] |
Contemp. Math., 595 (2013), 293-315.
doi: 10.1090/conm/595/11801. |
[19] |
Revista Mat. Complutense, 19 (2016), 91-126.
doi: 10.1007/s13163-015-0181-y. |
[20] |
J. Diff. Equas., 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[21] |
Trans. Amer. Math. Soc., 367 (2015), 8723-8756.
doi: 10.1090/S0002-9947-2014-06518-5. |
[22] |
Discrete Contin. Dynam. Systems, 35 (2015), 5003-5036
doi: 10.3934/dcds.2015.35.5003. |
[23] |
Forum Math., doi: 101515/forum-2-12-0042.
doi: 10.1515/forum-2012-0042. |
[24] |
Discrete Contin. Dynam. Systems, 34 (2014), 2657-2667.
doi: 10.3934/dcds.2014.34.2657. |
[25] |
Discrete Contin. Dynam. Systems, 34 (2014), 761-787. |
[26] |
Proc. Amer. Math. Soc., 129 (2001), 433-441.
doi: 10.1090/S0002-9939-00-05723-3. |
[27] |
J. Diff. Equas., 173 (2001), 138-144.
doi: 10.1006/jdeq.2000.3914. |
[28] |
J. Diff. Equas., 93 (1991), 283-310.
doi: 10.1016/0022-0396(91)90014-Z. |
[29] |
Discrete Contin. Dynam. Systems, 34 (2014), 4947-4966.
doi: 10.3934/dcds.2014.34.4947. |
[1] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[2] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[3] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[4] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[7] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[8] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[9] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[11] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[12] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[13] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
[14] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[15] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[16] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[17] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[18] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
[19] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]