November  2016, 15(6): 2509-2526. doi: 10.3934/cpaa.2016047

On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line

1. 

School of Science, Jiangnan University, Wuxi, 214122, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

3. 

Institute for Intelligent Systems, the University of Johannesburg, South Africa

4. 

Department of Mathematics, Tongji University, Shanghai, 200092, China

Received  November 2015 Revised  May 2016 Published  September 2016

In this paper, we investigate the existence and uniqueness of crossing limit cycle for a planar nonlinear Liénard system which is discontinuous along a straight line (called a discontinuity line). By using the Poincaré mapping method and some analysis techniques, a criterion for the existence, uniqueness and stability of a crossing limit cycle in the discontinuous differential system is established. An application to Schnakenberg model of an autocatalytic chemical reaction is given to illustrate the effectiveness of our result. We also consider a class of discontinuous piecewise linear differential systems and give a necessary condition of the existence of crossing limit cycle, which can be used to prove the non-existence of crossing limit cycle.
Citation: Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047
References:
[1]

Y. L. An and M. A. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point,, \emph{J. Differential Equations}, 258 (2015), 3194.  doi: 10.1016/j.jde.2015.01.006.  Google Scholar

[2]

J. C. Artés, J. Llibre, J. C. Medrado and M. A. Teixeira, Piecewise linear differential systems with two real saddles,, \emph{Math. Comput. Simulation}, 95 (2014), 13.  doi: 10.1016/j.matcom.2013.02.007.  Google Scholar

[3]

V. Carmona, S. Fernández-García, E. Freire and F. Torres, Melnikov theory for a class of planar hybrid systems,, \emph{Phys. D}, 248 (2013), 44.  doi: 10.1016/j.physd.2013.01.002.  Google Scholar

[4]

Z. Du, Y. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems,, \emph{Nonlinear Anal.}, 69 (2008), 3610.  doi: 10.1016/j.na.2007.09.045.  Google Scholar

[5]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and its Applications (Soviet Series),, Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[6]

N. Forcadel, A. Ghorbel and S. Walha, Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model,, \emph{J. Dynam. Differential Equations}, 26 (2014), 1133.  doi: 10.1007/s10884-014-9403-0.  Google Scholar

[7]

E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems,, \emph{SIAM J. Appl. Dyn. Syst.}, 11 (2012), 181.  doi: 10.1137/11083928X.  Google Scholar

[8]

Z. Y. Hou and S. Baigent, Global stability and repulsion in autonomous kolmogorov systems,, \emph{Commun. Pure Appl. Anal}, 14 ().  doi: 10.3934/cpaa.2015.14.1205.  Google Scholar

[9]

S. Huan and X. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics,, \emph{Nonlinear Anal.}, 92 (2013), 82.  doi: 10.1016/j.na.2013.06.017.  Google Scholar

[10]

S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems of node-node types,, \emph{J. Math. Anal. Appl.}, 411 (2014), 340.  doi: 10.1016/j.jmaa.2013.08.064.  Google Scholar

[11]

T. W. Hwang and H. J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions,, \emph{J. Phys. A}, 38 (2005), 8211.  doi: 10.1088/0305-4470/38/38/003.  Google Scholar

[12]

I. D. Iliev, C. Z. Li and J. Yu, Bifurcations of limit cycles in reversible quadratic system with a center, a saddle and two nodes,, \emph{Commun. Pure Appl. Anal}, 9 (2010), 583.  doi: 10.3934/cpaa.2010.9.583.  Google Scholar

[13]

F. Jiang and J. Sun, On the uniqueness of limit cycles in discontinuous Liénard-type systems,, \emph{Electron. J. Qual. Theory Differ. Equ.}, (): 1.   Google Scholar

[14]

F. Jiang, J. Shi and J. Sun, On the number of limit cycles for discontinuous generalized linéard polynomial differential systems,, \emph{Int. J. Bifurcat. Chaos}, 25 (2015).  doi: 10.1142/S021812741550131X.  Google Scholar

[15]

F. Jiang and J. Sun, Existence and uniqueness of limit cycle in discontinuous planar differential systems,, \emph{Qual. Theor. Dyn. Syst.}, (): 1.  doi: 10.1007/s12346-015-0141-4.  Google Scholar

[16]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, \emph{Math. Biosci.}, 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[17]

C. Z. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four,, \emph{J. Differential Equations}, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[18]

P. Liu, J. P. Shi, Y. W. Wang and X. H. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model,, \emph{J. Math. Chem.}, 51 (2013), 2001.  doi: 10.1007/s10910-013-0196-x.  Google Scholar

[19]

J. Llibre and A. C. Mereu, Limit cycles for discontinuous generalized Liénard polynomial differential equations,, \emph{Electron. J. Differential Equations}, ().   Google Scholar

[20]

J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree,, \emph{Nonlinearity}, 27 (2014), 563.  doi: 10.1088/0951-7715/27/3/563.  Google Scholar

[21]

J. Llibre, M. Ordó nez and E. Ponce, On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry,, \emph{Nonlinear Anal. Real World Appl.}, 14 (2013), 2002.  doi: 10.1016/j.nonrwa.2013.02.004.  Google Scholar

[22]

J. Llibre, E. Ponce and F. Torres, On the existence and uniqueness of limit cycles in Liénard differential equations allowing discontinuities,, \emph{Nonlinearity}, 21 (2008), 2121.  doi: 10.1088/0951-7715/21/9/013.  Google Scholar

[23]

A. C. J. Luo, Discontinuous Dynamical Systems,, Higher Education Press, (2012).  doi: 10.1007/978-3-642-22461-4.  Google Scholar

[24]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour,, \emph{J. Theoret. Biol.}, 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[25]

J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey,, \emph{J. Math. Biol.}, 62 (2011), 291.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

[26]

D. M. Xiao and Z. F. Zhang, On the uniqueness and nonexistence of limit cycles for predator-prey systems,, \emph{Nonlinearity}, 16 (2003), 1185.  doi: 10.1088/0951-7715/16/3/321.  Google Scholar

[27]

Y. Q. Ye, S. L. Cai, L. S. Chen, K. C. Huang, D. J. Luo, Z. E. Ma, E. N. Wang, M.-S. Wang and X.-A. Yang, Theory of Limit Cycles, vol. 66 of Translations of Mathematical Monographs,, 2nd edition, ().   Google Scholar

[28]

Z. F. Zhang, Proof of the uniqueness theorem of limit cycles of generalized Liénard equations,, \emph{Appl. Anal.}, 23 (1986), 63.  doi: 10.1080/00036818608839631.  Google Scholar

[29]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z.-X. Dong, Qualitative theory of differential equations, vol. 101 of Translations of Mathematical Monographs,, American Mathematical Society, (1992).   Google Scholar

show all references

References:
[1]

Y. L. An and M. A. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point,, \emph{J. Differential Equations}, 258 (2015), 3194.  doi: 10.1016/j.jde.2015.01.006.  Google Scholar

[2]

J. C. Artés, J. Llibre, J. C. Medrado and M. A. Teixeira, Piecewise linear differential systems with two real saddles,, \emph{Math. Comput. Simulation}, 95 (2014), 13.  doi: 10.1016/j.matcom.2013.02.007.  Google Scholar

[3]

V. Carmona, S. Fernández-García, E. Freire and F. Torres, Melnikov theory for a class of planar hybrid systems,, \emph{Phys. D}, 248 (2013), 44.  doi: 10.1016/j.physd.2013.01.002.  Google Scholar

[4]

Z. Du, Y. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems,, \emph{Nonlinear Anal.}, 69 (2008), 3610.  doi: 10.1016/j.na.2007.09.045.  Google Scholar

[5]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and its Applications (Soviet Series),, Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[6]

N. Forcadel, A. Ghorbel and S. Walha, Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model,, \emph{J. Dynam. Differential Equations}, 26 (2014), 1133.  doi: 10.1007/s10884-014-9403-0.  Google Scholar

[7]

E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems,, \emph{SIAM J. Appl. Dyn. Syst.}, 11 (2012), 181.  doi: 10.1137/11083928X.  Google Scholar

[8]

Z. Y. Hou and S. Baigent, Global stability and repulsion in autonomous kolmogorov systems,, \emph{Commun. Pure Appl. Anal}, 14 ().  doi: 10.3934/cpaa.2015.14.1205.  Google Scholar

[9]

S. Huan and X. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics,, \emph{Nonlinear Anal.}, 92 (2013), 82.  doi: 10.1016/j.na.2013.06.017.  Google Scholar

[10]

S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems of node-node types,, \emph{J. Math. Anal. Appl.}, 411 (2014), 340.  doi: 10.1016/j.jmaa.2013.08.064.  Google Scholar

[11]

T. W. Hwang and H. J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions,, \emph{J. Phys. A}, 38 (2005), 8211.  doi: 10.1088/0305-4470/38/38/003.  Google Scholar

[12]

I. D. Iliev, C. Z. Li and J. Yu, Bifurcations of limit cycles in reversible quadratic system with a center, a saddle and two nodes,, \emph{Commun. Pure Appl. Anal}, 9 (2010), 583.  doi: 10.3934/cpaa.2010.9.583.  Google Scholar

[13]

F. Jiang and J. Sun, On the uniqueness of limit cycles in discontinuous Liénard-type systems,, \emph{Electron. J. Qual. Theory Differ. Equ.}, (): 1.   Google Scholar

[14]

F. Jiang, J. Shi and J. Sun, On the number of limit cycles for discontinuous generalized linéard polynomial differential systems,, \emph{Int. J. Bifurcat. Chaos}, 25 (2015).  doi: 10.1142/S021812741550131X.  Google Scholar

[15]

F. Jiang and J. Sun, Existence and uniqueness of limit cycle in discontinuous planar differential systems,, \emph{Qual. Theor. Dyn. Syst.}, (): 1.  doi: 10.1007/s12346-015-0141-4.  Google Scholar

[16]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, \emph{Math. Biosci.}, 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[17]

C. Z. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four,, \emph{J. Differential Equations}, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[18]

P. Liu, J. P. Shi, Y. W. Wang and X. H. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model,, \emph{J. Math. Chem.}, 51 (2013), 2001.  doi: 10.1007/s10910-013-0196-x.  Google Scholar

[19]

J. Llibre and A. C. Mereu, Limit cycles for discontinuous generalized Liénard polynomial differential equations,, \emph{Electron. J. Differential Equations}, ().   Google Scholar

[20]

J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree,, \emph{Nonlinearity}, 27 (2014), 563.  doi: 10.1088/0951-7715/27/3/563.  Google Scholar

[21]

J. Llibre, M. Ordó nez and E. Ponce, On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry,, \emph{Nonlinear Anal. Real World Appl.}, 14 (2013), 2002.  doi: 10.1016/j.nonrwa.2013.02.004.  Google Scholar

[22]

J. Llibre, E. Ponce and F. Torres, On the existence and uniqueness of limit cycles in Liénard differential equations allowing discontinuities,, \emph{Nonlinearity}, 21 (2008), 2121.  doi: 10.1088/0951-7715/21/9/013.  Google Scholar

[23]

A. C. J. Luo, Discontinuous Dynamical Systems,, Higher Education Press, (2012).  doi: 10.1007/978-3-642-22461-4.  Google Scholar

[24]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour,, \emph{J. Theoret. Biol.}, 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[25]

J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey,, \emph{J. Math. Biol.}, 62 (2011), 291.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

[26]

D. M. Xiao and Z. F. Zhang, On the uniqueness and nonexistence of limit cycles for predator-prey systems,, \emph{Nonlinearity}, 16 (2003), 1185.  doi: 10.1088/0951-7715/16/3/321.  Google Scholar

[27]

Y. Q. Ye, S. L. Cai, L. S. Chen, K. C. Huang, D. J. Luo, Z. E. Ma, E. N. Wang, M.-S. Wang and X.-A. Yang, Theory of Limit Cycles, vol. 66 of Translations of Mathematical Monographs,, 2nd edition, ().   Google Scholar

[28]

Z. F. Zhang, Proof of the uniqueness theorem of limit cycles of generalized Liénard equations,, \emph{Appl. Anal.}, 23 (1986), 63.  doi: 10.1080/00036818608839631.  Google Scholar

[29]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z.-X. Dong, Qualitative theory of differential equations, vol. 101 of Translations of Mathematical Monographs,, American Mathematical Society, (1992).   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[3]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[4]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[7]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[8]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[9]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[10]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[13]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[14]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[15]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[16]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[20]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (4)

[Back to Top]