-
Previous Article
Invariant tori of a nonlinear Schrödinger equation with quasi-periodically unbounded perturbations
- CPAA Home
- This Issue
- Next Article
Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary
1. | School of Sciences, Xi'an University of Technology, Xian 710048, Shaanxi, P. R. China |
2. | School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, Henan Province, P. R. China |
3. | Center for Nonlinear Studies and School of Mathematics, Northwest University, Xian 710069, P. R. China |
In this paper, we obtain the global weak solution to the 3D spherically symmetric compressible isentropic Navier-Stokes equations with arbitrarily large, vacuum data and free boundary when the shear viscosity $\mu$ is a positive constant and the bulk viscosity $\lambda(\rho)=\rho^\beta$ with $\beta>0$. The analysis of the upper and lower bound of the density is based on some well-chosen functionals. In addition, the free boundary can be shown to expand outward at an algebraic rate in time.
References:
[1] |
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[2] |
D. Bresch and B. Desjardins, On the construction of approximate solutions for 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.
doi: 10.1016/j.matpur.2006.06.005. |
[3] |
Q. L. Chen, C. X. Miao and Z. F. Zhang, Global well-posedness for compressible NavierStokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.
doi: 10.1002/cpa.20325. |
[4] |
R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.
doi: 10.1007/s002220000078. |
[5] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.
![]() ![]() |
[6] |
Z. H. Guo, Q. S. Jiu and Z. P. Xin, Sphericall symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.
doi: 10.1137/070680333. |
[7] |
Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412.
doi: 10.1007/s00220-011-1334-6. |
[8] |
Z. H. Guo and Z. L. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes system, to appear.
doi: 10.3934/krm.2016.9.75. |
[9] |
Z. H. Guo, M. Wang and Y. Wang, Global solution to the 3D spherically symmetric compressible Navier-Stokes equations with large data, Preprint. |
[10] |
D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indaina Univ. Math. J., 41 (1992), 1225-1302.
doi: 10.1512/iumj.1992.41.41060. |
[11] |
D. Hoff, Discontinoous solution of the Navier-Stokes equations for multi-dimensional heatconducting fluids, Arch. Rat. Mech. Anal., 193 (1997), 303-354.
doi: 10.1007/s002050050055. |
[12] |
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.
doi: 10.1007/s002200000322. |
[13] |
D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343.
doi: 10.1007/s00205-004-0318-5. |
[14] |
X. D. Huang and J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, to appear.
doi: 10.1016/j.matpur.2016.02.003. |
[15] |
X. D. Huang and J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. |
[16] |
X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodia Math. Sem. Rep., 23 (1971), 60-120. |
[18] |
S. Jiang and P. Zhang, Global sphericall symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[19] |
S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropy NavierStokes with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-252.
doi: 10.4310/MAA.2005.v12.n3.a2. |
[20] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, Comm. Part. Diff. Equ., 36 (2011), 602-634.
doi: 10.1080/03605302.2010.516785. |
[21] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Vacuum behaviors around the rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, http://arxiv.org/abs/1109.0871.
doi: 10.1080/03605302.2010.516785. |
[22] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of the twodimensional compressible Navier-Stokes equations in weighted spaces, J. Diff. Equa., 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[23] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.
doi: 10.1007/s00021-014-0171-8. |
[24] |
Q. S. Jiu and Z. P. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330.
doi: 10.3934/krm.2008.1.313. |
[25] |
J. I. Kanel, A model system of equations for the one-dimensional motion of a gas (in Russian), Diff. Uravn., 4 (1968), 721-734. |
[26] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. |
[27] |
H. L. Li, J. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. |
[29] |
T. P. Liu and J. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[30] |
T. P. Liu, Z. P. Xin and T. Yang, Vacuum states of compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. |
[31] |
A. Matsumura and T. Nishida, The initial value peoblem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20 (1980), 67-104. |
[32] |
A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Part. Diff. Equa., 32 (2007), 431-452.
doi: 10.1080/03605300600857079. |
[33] |
J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. |
[34] |
M. Okada, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235.
doi: 10.1007/BF03167573. |
[35] |
M. Perepelitsa, On the global existence of weak solutions for the Navier-stokes equations of compressible fluid flows, SIAM J. Math. Anal., 38 (2006), 1126-153.
doi: 10.1137/040619119. |
[36] |
O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity, J. Differ. Eqs., 245 (2008), 1762-1774.
doi: 10.1016/j.jde.2008.07.007. |
[37] |
I. Straskraba and A. Zlotnik, Global properties of solutions to 1D viscous Straskraba barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys., 54 (2003), 593-607.
doi: 10.1007/s00033-003-1009-z. |
[38] |
A. Tani, On the first initial-boundary value problems of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kytt Univ., 13 (1971), 193-253. |
[39] |
Z. P. Xin, Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K. |
[40] |
Z. P. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, preprint, to appear.
doi: 10.1007/s00220-012-1610-0. |
show all references
References:
[1] |
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[2] |
D. Bresch and B. Desjardins, On the construction of approximate solutions for 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.
doi: 10.1016/j.matpur.2006.06.005. |
[3] |
Q. L. Chen, C. X. Miao and Z. F. Zhang, Global well-posedness for compressible NavierStokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.
doi: 10.1002/cpa.20325. |
[4] |
R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.
doi: 10.1007/s002220000078. |
[5] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.
![]() ![]() |
[6] |
Z. H. Guo, Q. S. Jiu and Z. P. Xin, Sphericall symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.
doi: 10.1137/070680333. |
[7] |
Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412.
doi: 10.1007/s00220-011-1334-6. |
[8] |
Z. H. Guo and Z. L. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes system, to appear.
doi: 10.3934/krm.2016.9.75. |
[9] |
Z. H. Guo, M. Wang and Y. Wang, Global solution to the 3D spherically symmetric compressible Navier-Stokes equations with large data, Preprint. |
[10] |
D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indaina Univ. Math. J., 41 (1992), 1225-1302.
doi: 10.1512/iumj.1992.41.41060. |
[11] |
D. Hoff, Discontinoous solution of the Navier-Stokes equations for multi-dimensional heatconducting fluids, Arch. Rat. Mech. Anal., 193 (1997), 303-354.
doi: 10.1007/s002050050055. |
[12] |
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.
doi: 10.1007/s002200000322. |
[13] |
D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343.
doi: 10.1007/s00205-004-0318-5. |
[14] |
X. D. Huang and J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, to appear.
doi: 10.1016/j.matpur.2016.02.003. |
[15] |
X. D. Huang and J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. |
[16] |
X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodia Math. Sem. Rep., 23 (1971), 60-120. |
[18] |
S. Jiang and P. Zhang, Global sphericall symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[19] |
S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropy NavierStokes with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-252.
doi: 10.4310/MAA.2005.v12.n3.a2. |
[20] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, Comm. Part. Diff. Equ., 36 (2011), 602-634.
doi: 10.1080/03605302.2010.516785. |
[21] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Vacuum behaviors around the rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, http://arxiv.org/abs/1109.0871.
doi: 10.1080/03605302.2010.516785. |
[22] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of the twodimensional compressible Navier-Stokes equations in weighted spaces, J. Diff. Equa., 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[23] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.
doi: 10.1007/s00021-014-0171-8. |
[24] |
Q. S. Jiu and Z. P. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330.
doi: 10.3934/krm.2008.1.313. |
[25] |
J. I. Kanel, A model system of equations for the one-dimensional motion of a gas (in Russian), Diff. Uravn., 4 (1968), 721-734. |
[26] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. |
[27] |
H. L. Li, J. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. |
[29] |
T. P. Liu and J. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[30] |
T. P. Liu, Z. P. Xin and T. Yang, Vacuum states of compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. |
[31] |
A. Matsumura and T. Nishida, The initial value peoblem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20 (1980), 67-104. |
[32] |
A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Part. Diff. Equa., 32 (2007), 431-452.
doi: 10.1080/03605300600857079. |
[33] |
J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. |
[34] |
M. Okada, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235.
doi: 10.1007/BF03167573. |
[35] |
M. Perepelitsa, On the global existence of weak solutions for the Navier-stokes equations of compressible fluid flows, SIAM J. Math. Anal., 38 (2006), 1126-153.
doi: 10.1137/040619119. |
[36] |
O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity, J. Differ. Eqs., 245 (2008), 1762-1774.
doi: 10.1016/j.jde.2008.07.007. |
[37] |
I. Straskraba and A. Zlotnik, Global properties of solutions to 1D viscous Straskraba barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys., 54 (2003), 593-607.
doi: 10.1007/s00033-003-1009-z. |
[38] |
A. Tani, On the first initial-boundary value problems of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kytt Univ., 13 (1971), 193-253. |
[39] |
Z. P. Xin, Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K. |
[40] |
Z. P. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, preprint, to appear.
doi: 10.1007/s00220-012-1610-0. |
[1] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[2] |
Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133 |
[3] |
Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure and Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373 |
[4] |
Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 |
[5] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[6] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[7] |
Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20 |
[8] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[9] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[10] |
J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 |
[11] |
Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201 |
[12] |
Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159 |
[13] |
Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481 |
[14] |
Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567 |
[15] |
Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769 |
[16] |
Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure and Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459 |
[17] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
[18] |
Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081 |
[19] |
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611 |
[20] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]