January  2017, 16(1): 1-24. doi: 10.3934/cpaa.2017001

Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary

1. 

School of Sciences, Xi'an University of Technology, Xian 710048, Shaanxi, P. R. China

2. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, Henan Province, P. R. China

3. 

Center for Nonlinear Studies and School of Mathematics, Northwest University, Xian 710069, P. R. China

Zilai Li, E-mail address: lizilai0917@163.com

Received  January 2015 Revised  October 2015 Published  November 2016

In this paper, we obtain the global weak solution to the 3D spherically symmetric compressible isentropic Navier-Stokes equations with arbitrarily large, vacuum data and free boundary when the shear viscosity $\mu$ is a positive constant and the bulk viscosity $\lambda(\rho)=\rho^\beta$ with $\beta>0$. The analysis of the upper and lower bound of the density is based on some well-chosen functionals. In addition, the free boundary can be shown to expand outward at an algebraic rate in time.

Citation: Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001
References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8. Google Scholar

[2]

D. Bresch and B. Desjardins, On the construction of approximate solutions for 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368. doi: 10.1016/j.matpur.2006.06.005. Google Scholar

[3]

Q. L. ChenC. X. Miao and Z. F. Zhang, Global well-posedness for compressible NavierStokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224. doi: 10.1002/cpa.20325. Google Scholar

[4]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078. Google Scholar

[5] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. Google Scholar
[6]

Z. H. GuoQ. S. Jiu and Z. P. Xin, Sphericall symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427. doi: 10.1137/070680333. Google Scholar

[7]

Z. H. GuoH. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412. doi: 10.1007/s00220-011-1334-6. Google Scholar

[8]

Z. H. Guo and Z. L. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes system, to appear. doi: 10.3934/krm.2016.9.75. Google Scholar

[9]

Z. H. Guo, M. Wang and Y. Wang, Global solution to the 3D spherically symmetric compressible Navier-Stokes equations with large data, Preprint.Google Scholar

[10]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indaina Univ. Math. J., 41 (1992), 1225-1302. doi: 10.1512/iumj.1992.41.41060. Google Scholar

[11]

D. Hoff, Discontinoous solution of the Navier-Stokes equations for multi-dimensional heatconducting fluids, Arch. Rat. Mech. Anal., 193 (1997), 303-354. doi: 10.1007/s002050050055. Google Scholar

[12]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276. doi: 10.1007/s002200000322. Google Scholar

[13]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343. doi: 10.1007/s00205-004-0318-5. Google Scholar

[14]

X. D. Huang and J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, to appear. doi: 10.1016/j.matpur.2016.02.003. Google Scholar

[15]

X. D. Huang and J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746.Google Scholar

[16]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585. doi: 10.1002/cpa.21382. Google Scholar

[17]

N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodia Math. Sem. Rep., 23 (1971), 60-120. Google Scholar

[18]

S. Jiang and P. Zhang, Global sphericall symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543. Google Scholar

[19]

S. JiangZ. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropy NavierStokes with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-252. doi: 10.4310/MAA.2005.v12.n3.a2. Google Scholar

[20]

Q. S. JiuY. Wang and Z. P. Xin, Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, Comm. Part. Diff. Equ., 36 (2011), 602-634. doi: 10.1080/03605302.2010.516785. Google Scholar

[21]

Q. S. Jiu, Y. Wang and Z. P. Xin, Vacuum behaviors around the rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, http://arxiv.org/abs/1109.0871. doi: 10.1080/03605302.2010.516785. Google Scholar

[22]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of the twodimensional compressible Navier-Stokes equations in weighted spaces, J. Diff. Equa., 255 (2013), 351-404. doi: 10.1016/j.jde.2013.04.014. Google Scholar

[23]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521. doi: 10.1007/s00021-014-0171-8. Google Scholar

[24]

Q. S. Jiu and Z. P. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330. doi: 10.3934/krm.2008.1.313. Google Scholar

[25]

J. I. Kanel, A model system of equations for the one-dimensional motion of a gas (in Russian), Diff. Uravn., 4 (1968), 721-734. Google Scholar

[26]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. Google Scholar

[27]

H. L. LiJ. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444. doi: 10.1007/s00220-008-0495-4. Google Scholar

[28]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Google Scholar

[29]

T. P. Liu and J. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359. doi: 10.1016/0196-8858(80)90016-0. Google Scholar

[30]

T. P. LiuZ. P. Xin and T. Yang, Vacuum states of compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. Google Scholar

[31]

A. Matsumura and T. Nishida, The initial value peoblem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. Google Scholar

[32]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Part. Diff. Equa., 32 (2007), 431-452. doi: 10.1080/03605300600857079. Google Scholar

[33]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. Google Scholar

[34]

M. Okada, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235. doi: 10.1007/BF03167573. Google Scholar

[35]

M. Perepelitsa, On the global existence of weak solutions for the Navier-stokes equations of compressible fluid flows, SIAM J. Math. Anal., 38 (2006), 1126-153. doi: 10.1137/040619119. Google Scholar

[36]

O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity, J. Differ. Eqs., 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007. Google Scholar

[37]

I. Straskraba and A. Zlotnik, Global properties of solutions to 1D viscous Straskraba barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys., 54 (2003), 593-607. doi: 10.1007/s00033-003-1009-z. Google Scholar

[38]

A. Tani, On the first initial-boundary value problems of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kytt Univ., 13 (1971), 193-253. Google Scholar

[39]

Z. P. Xin, Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K. Google Scholar

[40]

Z. P. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, preprint, to appear. doi: 10.1007/s00220-012-1610-0. Google Scholar

show all references

References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8. Google Scholar

[2]

D. Bresch and B. Desjardins, On the construction of approximate solutions for 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368. doi: 10.1016/j.matpur.2006.06.005. Google Scholar

[3]

Q. L. ChenC. X. Miao and Z. F. Zhang, Global well-posedness for compressible NavierStokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224. doi: 10.1002/cpa.20325. Google Scholar

[4]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078. Google Scholar

[5] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. Google Scholar
[6]

Z. H. GuoQ. S. Jiu and Z. P. Xin, Sphericall symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427. doi: 10.1137/070680333. Google Scholar

[7]

Z. H. GuoH. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412. doi: 10.1007/s00220-011-1334-6. Google Scholar

[8]

Z. H. Guo and Z. L. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes system, to appear. doi: 10.3934/krm.2016.9.75. Google Scholar

[9]

Z. H. Guo, M. Wang and Y. Wang, Global solution to the 3D spherically symmetric compressible Navier-Stokes equations with large data, Preprint.Google Scholar

[10]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indaina Univ. Math. J., 41 (1992), 1225-1302. doi: 10.1512/iumj.1992.41.41060. Google Scholar

[11]

D. Hoff, Discontinoous solution of the Navier-Stokes equations for multi-dimensional heatconducting fluids, Arch. Rat. Mech. Anal., 193 (1997), 303-354. doi: 10.1007/s002050050055. Google Scholar

[12]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276. doi: 10.1007/s002200000322. Google Scholar

[13]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343. doi: 10.1007/s00205-004-0318-5. Google Scholar

[14]

X. D. Huang and J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, to appear. doi: 10.1016/j.matpur.2016.02.003. Google Scholar

[15]

X. D. Huang and J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746.Google Scholar

[16]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585. doi: 10.1002/cpa.21382. Google Scholar

[17]

N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodia Math. Sem. Rep., 23 (1971), 60-120. Google Scholar

[18]

S. Jiang and P. Zhang, Global sphericall symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543. Google Scholar

[19]

S. JiangZ. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropy NavierStokes with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-252. doi: 10.4310/MAA.2005.v12.n3.a2. Google Scholar

[20]

Q. S. JiuY. Wang and Z. P. Xin, Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, Comm. Part. Diff. Equ., 36 (2011), 602-634. doi: 10.1080/03605302.2010.516785. Google Scholar

[21]

Q. S. Jiu, Y. Wang and Z. P. Xin, Vacuum behaviors around the rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity, http://arxiv.org/abs/1109.0871. doi: 10.1080/03605302.2010.516785. Google Scholar

[22]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of the twodimensional compressible Navier-Stokes equations in weighted spaces, J. Diff. Equa., 255 (2013), 351-404. doi: 10.1016/j.jde.2013.04.014. Google Scholar

[23]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521. doi: 10.1007/s00021-014-0171-8. Google Scholar

[24]

Q. S. Jiu and Z. P. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330. doi: 10.3934/krm.2008.1.313. Google Scholar

[25]

J. I. Kanel, A model system of equations for the one-dimensional motion of a gas (in Russian), Diff. Uravn., 4 (1968), 721-734. Google Scholar

[26]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. Google Scholar

[27]

H. L. LiJ. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444. doi: 10.1007/s00220-008-0495-4. Google Scholar

[28]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Google Scholar

[29]

T. P. Liu and J. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359. doi: 10.1016/0196-8858(80)90016-0. Google Scholar

[30]

T. P. LiuZ. P. Xin and T. Yang, Vacuum states of compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. Google Scholar

[31]

A. Matsumura and T. Nishida, The initial value peoblem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. Google Scholar

[32]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Part. Diff. Equa., 32 (2007), 431-452. doi: 10.1080/03605300600857079. Google Scholar

[33]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. Google Scholar

[34]

M. Okada, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235. doi: 10.1007/BF03167573. Google Scholar

[35]

M. Perepelitsa, On the global existence of weak solutions for the Navier-stokes equations of compressible fluid flows, SIAM J. Math. Anal., 38 (2006), 1126-153. doi: 10.1137/040619119. Google Scholar

[36]

O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity, J. Differ. Eqs., 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007. Google Scholar

[37]

I. Straskraba and A. Zlotnik, Global properties of solutions to 1D viscous Straskraba barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys., 54 (2003), 593-607. doi: 10.1007/s00033-003-1009-z. Google Scholar

[38]

A. Tani, On the first initial-boundary value problems of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kytt Univ., 13 (1971), 193-253. Google Scholar

[39]

Z. P. Xin, Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K. Google Scholar

[40]

Z. P. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, preprint, to appear. doi: 10.1007/s00220-012-1610-0. Google Scholar

[1]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[2]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[3]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[4]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[5]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[6]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[7]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[8]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[9]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[10]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[11]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[12]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[13]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[14]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

[15]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[16]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[17]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[18]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[19]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[20]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (21)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]