    • Previous Article
Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system
• CPAA Home
• This Issue
• Next Article
Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$
January  2017, 16(1): 115-130. doi: 10.3934/cpaa.2017005

## A complete classification of ground-states for a coupled nonlinear Schrödinger system

 1 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, P.R. China 2 Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R.China 3 Department of Mathematics and Statistics, Utah State University, Logan UT 84322, USA

Received  June 2016 Revised  August 2016 Published  November 2016

In this paper, we establish the existence of nontrivial ground-state solutions for a coupled nonlinear Schrödinger system
 $-\Delta u_j+ u_j=\sum\limits_{i=1}^mb_{ij}u_i^2u_j, \quad\text{in}\ \mathbb{R}^n,\\ u_j(x)\to 0\ \text{as}\ |x|\ \to \infty, \quad j=1,2,\cdots, m,$
where $n=1, 2, 3, m\geq 2$ and $b_{ij}$ are positive constants satisfying $b_{ij}=b_{ji}.$ By nontrivial we mean a solution that has all components non-zero. Due to possible systems collapsing it is important to classify ground state solutions. For $m=3$, we get a complete picture that describes whether nontrivial ground-state solutions exist or not for all possible cases according to some algebraic conditions of the matrix $B = (b_{ij})$. In particular, there is a nontrivial ground-state solution provided that all coupling constants $b_{ij}, i\neq j$ are sufficiently large as opposed to cases in which any ground-state solution has at least a zero component when $b_{ij}, i\neq j$ are all sufficiently small. Moreover, we prove that any ground-state solution is synchronized when matrix $B=(b_{ij})$ is positive semi-definite.
Citation: Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005
##### References:
  J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Advances in Differential Equations, 18 (2013), 1129-1164. Google Scholar  A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar  T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J.Partial Differential Equations, 19 (2006), 200-207. Google Scholar  D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139. Google Scholar  A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ. Anormalous dispersion, Appl. Phys. Lett., 23 (1973), 142-144. Google Scholar  A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171-172. Google Scholar  T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar  T. C. Lin and J. Wei, Ground State of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 277 (2008), 573-576. doi: 10.1007/s00220-007-0365-5.  Google Scholar  H. Liu, Z. Liu and J. Chang, Existence and uniquiness of positive solutions of nonlinear Schrödinger systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 365-390. doi: 10.1017/S0308210513000711.  Google Scholar  Z. Liu, Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193. Google Scholar  M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-882. Google Scholar  N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000. Google Scholar  G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), 231-238. Google Scholar  CH. Rüegg, N.Cavadini, A. Furrer, et al, Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl3, Nature, 423 (2003), 62-65. Google Scholar  J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011. Google Scholar  Z.-Q. Wang and M. Willem, Partial symmetry of vector solutions for elliptic systems, Journal d'Analyse Mathematique, 122 (2014), 69-85. doi: 10.1007/s11854-014-0003-z.  Google Scholar  J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152. doi: 10.1111/1467-9590.00073.  Google Scholar  V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys., 4 (1968), 190-194. Google Scholar  V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. Jetp., 35 (1972), 908-914. Google Scholar

show all references

##### References:
  J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Advances in Differential Equations, 18 (2013), 1129-1164. Google Scholar  A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar  T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J.Partial Differential Equations, 19 (2006), 200-207. Google Scholar  D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139. Google Scholar  A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ. Anormalous dispersion, Appl. Phys. Lett., 23 (1973), 142-144. Google Scholar  A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171-172. Google Scholar  T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar  T. C. Lin and J. Wei, Ground State of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 277 (2008), 573-576. doi: 10.1007/s00220-007-0365-5.  Google Scholar  H. Liu, Z. Liu and J. Chang, Existence and uniquiness of positive solutions of nonlinear Schrödinger systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 365-390. doi: 10.1017/S0308210513000711.  Google Scholar  Z. Liu, Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193. Google Scholar  M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-882. Google Scholar  N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000. Google Scholar  G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), 231-238. Google Scholar  CH. Rüegg, N.Cavadini, A. Furrer, et al, Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl3, Nature, 423 (2003), 62-65. Google Scholar  J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011. Google Scholar  Z.-Q. Wang and M. Willem, Partial symmetry of vector solutions for elliptic systems, Journal d'Analyse Mathematique, 122 (2014), 69-85. doi: 10.1007/s11854-014-0003-z.  Google Scholar  J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152. doi: 10.1111/1467-9590.00073.  Google Scholar  V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys., 4 (1968), 190-194. Google Scholar  V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. Jetp., 35 (1972), 908-914. Google Scholar
The number of non-zero components of ground-state solutions
 case condition 1 condition 2 type 1 $det(B) > 0$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p= 3$ 2 $det(B) > 0$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$ 3 $det(B) < 0$ $p=1, 2$ 4 $rank(B)=1$ $p=1, 2, 3$ 5 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=2, 3$ 6 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=1, 2$ 7 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p=1, 2, 3$ 8 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
 case condition 1 condition 2 type 1 $det(B) > 0$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p= 3$ 2 $det(B) > 0$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$ 3 $det(B) < 0$ $p=1, 2$ 4 $rank(B)=1$ $p=1, 2, 3$ 5 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=2, 3$ 6 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=1, 2$ 7 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p=1, 2, 3$ 8 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
  Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316  Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048  Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120  Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867  Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061  Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259  Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450  Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298  Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136  Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395  Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054  Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009  Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022  Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138  Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265  Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299  Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040  Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292  Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339  Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

2020 Impact Factor: 1.916