January  2017, 16(1): 243-252. doi: 10.3934/cpaa.2017011

Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity

Mathematics Department, University of Monastir, Faculty of Sciences, Monastir, 5019, Tunisia

Received  April 2016 Revised  August 2016 Published  November 2016

In this paper we consider the following perturbed nonlocal problem with exponential nonlinearity
$\begin{cases}-\mathcal{L}_{K}u+ \left|u\right|^{p-2}u+h(u)= f \ \ \ \ \ \mbox{in} \ \ \Omega,\\u=0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{in}\ \ \mathbb{R}^{N}\setminus \Omega,\end{cases}$
where $s\in (0, 1)$, $N=ps$, $p\geq 2$ and $f\in L.{\infty}(\mathbb{R}^{N})$. First, we generalize a suitable Trudinger-Moser inequality to a fractional functional space. Then, using the Ekeland's variational principle, we prove the existence of a solution of problem (1).
Citation: Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011
References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${\mathbb{R}.n}$ and their best constants, Proc. Amer. Math. Soc, 128 (2000), 2051-2057.  doi: 10.1090/S0002-9939-99-05180-1.  Google Scholar

[2]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in ${\mathbb{R}.n}$, J. Differential Equations, 255 (2012), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[3]

M. Giovanni Bisci and V. Radulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var., 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[4]

G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Combridge University press, Cambridge, 2015. doi: 10.1017/CBO9781316282397.  Google Scholar

[5]

Brezis Haim and Merle Frank, Uniform estimates and blow-up behavior for solutions of -∆u = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[6]

L. CafarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplatian, Invent. Math, 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

L. CaffarelliJ-M Roque joffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc, 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[8]

X. Cheng, Ground state solutions of asymptotically linear fractional Schrödinger equations with unbounded potential, J. Math. Phys, 54 (2013), 061504.  doi: 10.1063/1.4809933.  Google Scholar

[9]

I. Ekeland, On the variational principle principle, J. Math. Anal. Appl, 47 (2014), 324-353.   Google Scholar

[10]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Pro. Roy. Soc. Edinburgh Sect A, 142 (2012), 1237-1262.   Google Scholar

[11]

D. G. de FigueiredoJ. M. do Ò and B. Ruf, On an inequality by Trudinger N., J. Moser and related elliptic equations, Commun. Pure Appl. Math, 55 (2002), 135-152.  doi: 10.1002/cpa.10015.  Google Scholar

[12]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in he critical growth range, Calc. Var. Partial Differ. Equ, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, preprint. doi: 10.5186/aasfm.2015.4009.  Google Scholar

[14]

G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.   Google Scholar

[15]

A. Iannizzotto and M. Squassina, $\frac{1}{2}$ -Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl, 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.  Google Scholar

[16]

Yan Li Yan and Shafrir Itai, Blow-up analysis for solutions of -∆u = Veu in dimension two, Indiana Univ. Math. J, 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Analysis, 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[19]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[20]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam, 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[21]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105-2137.   Google Scholar

[22]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial. Differ. Eq, 33 (2009), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[23]

N. S. Trudinger, On imbeddings into Orcliz spaces and some applications, J. Math. Mech, 17 (1967), 473-483.   Google Scholar

[24]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

show all references

References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${\mathbb{R}.n}$ and their best constants, Proc. Amer. Math. Soc, 128 (2000), 2051-2057.  doi: 10.1090/S0002-9939-99-05180-1.  Google Scholar

[2]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in ${\mathbb{R}.n}$, J. Differential Equations, 255 (2012), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[3]

M. Giovanni Bisci and V. Radulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var., 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[4]

G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Combridge University press, Cambridge, 2015. doi: 10.1017/CBO9781316282397.  Google Scholar

[5]

Brezis Haim and Merle Frank, Uniform estimates and blow-up behavior for solutions of -∆u = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[6]

L. CafarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplatian, Invent. Math, 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

L. CaffarelliJ-M Roque joffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc, 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[8]

X. Cheng, Ground state solutions of asymptotically linear fractional Schrödinger equations with unbounded potential, J. Math. Phys, 54 (2013), 061504.  doi: 10.1063/1.4809933.  Google Scholar

[9]

I. Ekeland, On the variational principle principle, J. Math. Anal. Appl, 47 (2014), 324-353.   Google Scholar

[10]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Pro. Roy. Soc. Edinburgh Sect A, 142 (2012), 1237-1262.   Google Scholar

[11]

D. G. de FigueiredoJ. M. do Ò and B. Ruf, On an inequality by Trudinger N., J. Moser and related elliptic equations, Commun. Pure Appl. Math, 55 (2002), 135-152.  doi: 10.1002/cpa.10015.  Google Scholar

[12]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in he critical growth range, Calc. Var. Partial Differ. Equ, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, preprint. doi: 10.5186/aasfm.2015.4009.  Google Scholar

[14]

G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.   Google Scholar

[15]

A. Iannizzotto and M. Squassina, $\frac{1}{2}$ -Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl, 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.  Google Scholar

[16]

Yan Li Yan and Shafrir Itai, Blow-up analysis for solutions of -∆u = Veu in dimension two, Indiana Univ. Math. J, 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Analysis, 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[19]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[20]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam, 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[21]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105-2137.   Google Scholar

[22]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial. Differ. Eq, 33 (2009), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[23]

N. S. Trudinger, On imbeddings into Orcliz spaces and some applications, J. Math. Mech, 17 (1967), 473-483.   Google Scholar

[24]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[1]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[2]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[3]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[4]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[5]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[6]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[7]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[8]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[9]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[10]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[11]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[12]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[13]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[14]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[15]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[16]

Manuel del Pino, Jean Dolbeault, Monica Musso. Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Communications on Pure & Applied Analysis, 2006, 5 (3) : 463-482. doi: 10.3934/cpaa.2006.5.463

[17]

A. Adam Azzam. Scattering for the two dimensional NLS with (full) exponential nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1071-1101. doi: 10.3934/cpaa.2018052

[18]

Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709

[19]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[20]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (23)
  • HTML views (89)
  • Cited by (2)

Other articles
by authors

[Back to Top]