January  2017, 16(1): 273-294. doi: 10.3934/cpaa.2017013

Quasineutral limit for the quantum Navier-Stokes-Poisson equations

1. 

School of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

2. 

Department of Mathematics, Chongqing University, Chongqing 401331, China

3. 

College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

Xueke Pu, E-mail address: xuekepu@cqu.edu.cn

Received  May 2016 Revised  September 2016 Published  September 2016

Fund Project: The second author is supported by NSFC (grant 11471057) and the Fundamental Research Funds for the Central Universities (grant Project No. 106112016CDJZR105501). The third author is supported by NSFC (grant 11371042) and the key fundation of Beijing Municipal Education Commission

In this paper, we study the quasineutral limit and asymptotic behaviors for the quantum Navier-Stokes-Possion equation. We apply a formal expansion according to Debye length and derive the neutral incompressible Navier-Stokes equation. To establish this limit mathematically rigorously, we derive uniform (in Debye length) estimates for the remainders, for well-prepared initial data. It is demonstrated that the quantum effect do play important roles in the estimates and the norm introduced depends on the Planck constant $\hbar>0$.

Citation: Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013
References:
[1]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" valuables, Ⅰ, Physical Review, 85 (1952), 166-179. Google Scholar

[2]

D. BreschB. Desjardins and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincaré Anal. Nonlinear, 22 (2005), 1-9. doi: 10.1016/j.anihpc.2004.02.001. Google Scholar

[3]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), 219-230. doi: 10.1002/zamm.200900297. Google Scholar

[4]

L. ChenD. Donatelli and P. Marcati, Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport, SIAM Journal on Mathematical Analysis, 45 (2013), 915-933. doi: 10.1137/120876630. Google Scholar

[5]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, 1988. Google Scholar

[6]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Commun. Partial Differential Equations, 23 (2000), 1099-1113. doi: 10.1080/03605300008821542. Google Scholar

[7]

P. DegondS. Gallego and F. Méhats, Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272. doi: 10.1137/06067153X. Google Scholar

[8]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, Quantum Transport, Springer Berlin Heidelberg, (2008), 111-168. doi: 10.1007/978-3-540-79574-2_3. Google Scholar

[9]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum diffusion models derived from the entropy principle, Progress in Industrial Mathematics at ECMI 2006, Springer Berlin Heidelberg, (2008), 106-122. doi: 10.1007/978-3-540-71992-2_6. Google Scholar

[10]

P. DegondF. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-665. doi: 10.1007/s10955-004-8823-3. Google Scholar

[11]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525. Google Scholar

[12]

D. Donatelli and P. Marcati, A quasineutral type limit for the Navier-Stokes-Poisson system with large data, Nonlinearity, 21 (2008), 135-148. doi: 10.1088/0951-7715/21/1/008. Google Scholar

[13]

D. Donatelli and P. Marcati, Analysis of oscillations and defect measures for the quasineutral limit in plasma physics, Arch. Ration. Mech. Anal., 206 (2012), 159-188. doi: 10.1007/s00205-012-0531-6. Google Scholar

[14]

D. Donatelli and P. Marcati, Quasineutral limit, dispersion and oscillations for Korteweg type fluids, SIAM J. Math. Anal., 2265 (2015), 159-2282. doi: 10.1137/140987651. Google Scholar

[15]

J. E. Dunn and J. Serrin, On the thermodynamics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907. Google Scholar

[16]

C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427. doi: 10.1137/S0036139992240425. Google Scholar

[17]

I. Gasser and P. Marcati, A vanishing Debye length limit in a hydrodynamic model for semiconductors, Hyperbolic Problems: Theory, Numerics, Applications, (2001), 409-414. Google Scholar

[18]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Methods Appl. Sci., 24 (2001), 81-92. doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O. Google Scholar

[19]

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer, New York, 2011. doi: 10.1007/978-1-4419-8201-8. Google Scholar

[20]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X. Google Scholar

[21]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069. Google Scholar

[22]

Q. JuF. Li and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data, J. Differential Equations, 247 (2009), 203-224. doi: 10.1016/j.jde.2009.02.019. Google Scholar

[23]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068. Google Scholar

[24]

A. JüngelC. -K. Lin and K. -C. Wu, An asymptotic limit of a Navier-Stokes system with capillary effects, Comm. Math. Phys., 329 (2014), 725-744. doi: 10.1007/s00220-014-1961-9. Google Scholar

[25]

A. Jüngel and J. -P. Miliŝić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solutions, Kinetic and Related Models, 4 (2011), 785-807. doi: 10.3934/krm.2011.4.785. Google Scholar

[26]

H. Li and C. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Comm. Math. Phys., 256 (2005), 195-212. doi: 10.1007/s00220-005-1316-7. Google Scholar

[27]

Y. Li and W. Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, IMA J. Appl. Math., 80 (2015), 712-727. doi: 10.1093/imamat/hxu008. Google Scholar

[28]

P. -L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl. , vol. 3, The Clarendon Press/Oxford University Press, New York, 1996. Google Scholar

[29]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. Google Scholar

[30]

X. Pu and B. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinetic & Related Models, 9 (2016), 165-191. doi: 10.3934/krm.2016.9.165. Google Scholar

[31]

X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions, Quart. Appl. Math., 74 (2016), 245-273. doi: 10.1090/qam/1424. Google Scholar

[32]

Y. PengY. Wang and W. Yong, Quasi-neutral limit of the non-isentropic Euler-Poisson system, Proceedings of the Royal Society of Edinburgh, 136A (2006), 1013-1026. doi: 10.1017/S0308210500004856. Google Scholar

[33]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970. Google Scholar

[34]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, 2001. doi: 10.1090/chel/343. Google Scholar

[35]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403. Google Scholar

[36]

S. Wang and S. Jiang, The convergence of Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31 (2006), 571-591. doi: 10.1080/03605300500361487. Google Scholar

[37]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. Google Scholar

show all references

References:
[1]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" valuables, Ⅰ, Physical Review, 85 (1952), 166-179. Google Scholar

[2]

D. BreschB. Desjardins and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincaré Anal. Nonlinear, 22 (2005), 1-9. doi: 10.1016/j.anihpc.2004.02.001. Google Scholar

[3]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), 219-230. doi: 10.1002/zamm.200900297. Google Scholar

[4]

L. ChenD. Donatelli and P. Marcati, Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport, SIAM Journal on Mathematical Analysis, 45 (2013), 915-933. doi: 10.1137/120876630. Google Scholar

[5]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, 1988. Google Scholar

[6]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Commun. Partial Differential Equations, 23 (2000), 1099-1113. doi: 10.1080/03605300008821542. Google Scholar

[7]

P. DegondS. Gallego and F. Méhats, Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272. doi: 10.1137/06067153X. Google Scholar

[8]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, Quantum Transport, Springer Berlin Heidelberg, (2008), 111-168. doi: 10.1007/978-3-540-79574-2_3. Google Scholar

[9]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum diffusion models derived from the entropy principle, Progress in Industrial Mathematics at ECMI 2006, Springer Berlin Heidelberg, (2008), 106-122. doi: 10.1007/978-3-540-71992-2_6. Google Scholar

[10]

P. DegondF. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-665. doi: 10.1007/s10955-004-8823-3. Google Scholar

[11]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525. Google Scholar

[12]

D. Donatelli and P. Marcati, A quasineutral type limit for the Navier-Stokes-Poisson system with large data, Nonlinearity, 21 (2008), 135-148. doi: 10.1088/0951-7715/21/1/008. Google Scholar

[13]

D. Donatelli and P. Marcati, Analysis of oscillations and defect measures for the quasineutral limit in plasma physics, Arch. Ration. Mech. Anal., 206 (2012), 159-188. doi: 10.1007/s00205-012-0531-6. Google Scholar

[14]

D. Donatelli and P. Marcati, Quasineutral limit, dispersion and oscillations for Korteweg type fluids, SIAM J. Math. Anal., 2265 (2015), 159-2282. doi: 10.1137/140987651. Google Scholar

[15]

J. E. Dunn and J. Serrin, On the thermodynamics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907. Google Scholar

[16]

C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427. doi: 10.1137/S0036139992240425. Google Scholar

[17]

I. Gasser and P. Marcati, A vanishing Debye length limit in a hydrodynamic model for semiconductors, Hyperbolic Problems: Theory, Numerics, Applications, (2001), 409-414. Google Scholar

[18]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Methods Appl. Sci., 24 (2001), 81-92. doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O. Google Scholar

[19]

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer, New York, 2011. doi: 10.1007/978-1-4419-8201-8. Google Scholar

[20]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X. Google Scholar

[21]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069. Google Scholar

[22]

Q. JuF. Li and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data, J. Differential Equations, 247 (2009), 203-224. doi: 10.1016/j.jde.2009.02.019. Google Scholar

[23]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068. Google Scholar

[24]

A. JüngelC. -K. Lin and K. -C. Wu, An asymptotic limit of a Navier-Stokes system with capillary effects, Comm. Math. Phys., 329 (2014), 725-744. doi: 10.1007/s00220-014-1961-9. Google Scholar

[25]

A. Jüngel and J. -P. Miliŝić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solutions, Kinetic and Related Models, 4 (2011), 785-807. doi: 10.3934/krm.2011.4.785. Google Scholar

[26]

H. Li and C. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Comm. Math. Phys., 256 (2005), 195-212. doi: 10.1007/s00220-005-1316-7. Google Scholar

[27]

Y. Li and W. Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, IMA J. Appl. Math., 80 (2015), 712-727. doi: 10.1093/imamat/hxu008. Google Scholar

[28]

P. -L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl. , vol. 3, The Clarendon Press/Oxford University Press, New York, 1996. Google Scholar

[29]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. Google Scholar

[30]

X. Pu and B. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinetic & Related Models, 9 (2016), 165-191. doi: 10.3934/krm.2016.9.165. Google Scholar

[31]

X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions, Quart. Appl. Math., 74 (2016), 245-273. doi: 10.1090/qam/1424. Google Scholar

[32]

Y. PengY. Wang and W. Yong, Quasi-neutral limit of the non-isentropic Euler-Poisson system, Proceedings of the Royal Society of Edinburgh, 136A (2006), 1013-1026. doi: 10.1017/S0308210500004856. Google Scholar

[33]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970. Google Scholar

[34]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, 2001. doi: 10.1090/chel/343. Google Scholar

[35]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403. Google Scholar

[36]

S. Wang and S. Jiang, The convergence of Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31 (2006), 571-591. doi: 10.1080/03605300500361487. Google Scholar

[37]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. Google Scholar

[1]

Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055

[2]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[3]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[4]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[5]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[6]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[7]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[8]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[9]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[10]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[11]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[12]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[13]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[14]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[15]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[16]

Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic & Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049

[17]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[18]

Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221

[19]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[20]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (23)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]