-
Previous Article
Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]
- CPAA Home
- This Issue
-
Next Article
Periodic solutions for nonlocal fractional equations
Global well posedness for the ghost effect system
1. | LAMA, UMR 5127 CNRS, Université de Savoie Mont, Blanc 73376 Le Bourget du lac cedex, France |
2. | Laboratory of Mathematics-EDST, Lebanese University, Beirut, Lebanon |
The aim of this paper is to discuss the issue of global existence of weak solutions of the so called ghost effect system which has been derived recently in [C. D. LEVERMORE, W. SUN, K. TRIVISA, SIAM J. Math. Anal. 2012]. We extend the local existence of solutions proved in [C.D. LEVERMORE, W. SUN, K. TRIVISA, Indiana Univ. J., 2011] to a global existence result. The key tool in this paper is a new functional inequality inspired of what proposed in [A. JÜNGEL, D. MATTHES, SIAM J. Math. Anal., 2008]. Such an inequality being adapted in [D. BRESCH, A. VASSEUR, C. YU, 2016] to be useful for compressible Navier-Stokes equations with degenerate viscosities. Our strategy to prove the global existence of solution builds upon the framework developed in [D. BRESCH, V. GIOVANGILI, E. ZATORSKA, J. Math. Pures Appl., 2015] for low Mach number system.
References:
[1] |
P. Antonelli and S. Spirito, A global existence result for a zero mach number system, arXiv: 1605.03510, 2016. |
[2] |
D. Bresch, F. Couderc, P. Noble and J. -P. Vila, New extended formulations of euler-korteweg equations based on a generalization of the quantum bohm identity, arXiv: 1503.08678, 2015. |
[3] |
D. Bresch, B. Desjardins and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part ii existence of global κ-entropy solutions to the compressible navier-stokes systems with degenerate viscosities, J. Math. Pures Appl., 4 (2015), 801-836.
doi: 10.1016/j.matpur.2015.05.004. |
[4] |
D. Bresch, E. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic incompressible fluid models, Journal of Math. Fluid Mech., 3 (2007), 377-397.
doi: 10.1007/s00021-005-0204-4. |
[5] |
D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part i well posedness for zero mach number systems, Journal de Math. Pures. Appl., 4 (2015), 762-800.
doi: 10.1016/j.matpur.2015.05.003. |
[6] |
D. Bresch, A. Vasseur and C. Yu, Global existence of compressible Navier-Stokes equation with degenerates viscosities, In preparation, (2016). |
[7] |
R. Danchin and X. Liao, On the well-posedness of the full low Mach number limit system in general critical Besov spaces, Commun. Contemp. Math., 3 (2012), 125-0022.
doi: 10.1142/S0219199712500228. |
[8] |
J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 4 (2010), 854-856.
doi: 10.1016/j.na.2010.03.047. |
[9] |
M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. , (2015), 106-121.
doi: 10.1016/j.na.2015.07.006. |
[10] |
F. Jiang, A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Real World Appl., 3 (2011), 1733-1735.
doi: 10.1016/j.nonrwa.2010.11.005. |
[11] |
A. Jüngel, Global weak solutions to compressible navier-stokes equations for quantum fluids, SIAM J. Math. Anal., 3 (2010), 1025-1045.
doi: 10.1137/090776068. |
[12] |
A. Jüngel and D. Matthes, The derrida-lebowitz-speer-spohn equation: existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 6 (2008), 1996-2015.
doi: 10.1137/060676878. |
[13] |
C. D. Levermore, W. Sun and K. Trivisa, A low mach number limit of a dispersive navierstokes system, SIAM J. Math. Anal., 3 (2012), 1760-1807.
doi: 10.1137/100818765. |
[14] |
C. D. Levermore, W. R. Sun and K. Trivisa, Local well-posedness of a ghost effect system, Indiana Univ. Math. J., 2 (2009), 517-576. |
[15] |
X. Liao, A global existence result for a zero Mach number system, J. Math. Fluid Mech., 1 (2014), 77-103.
doi: 10.1007/s00021-013-0152-3. |
[16] |
P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
P. -L Lions, Mathematical Topics in Fluid Mechanics. Vol. 2 Compressible Models, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. |
[18] |
J. -C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos Trans R Soc Lond B Biol Sci, (1879), 231-256. |
[19] |
J. Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech., 3 (1999), 225-234.
doi: 10.1007/s000210050010. |
[20] |
Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit, Annu. Rev. Fluid Mech., 32 (2000), 779-811.
doi: 10.1146/annurev.fluid.32.1.779. |
[21] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser Boston, Inc. , Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[22] |
C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. Ⅰ (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
show all references
References:
[1] |
P. Antonelli and S. Spirito, A global existence result for a zero mach number system, arXiv: 1605.03510, 2016. |
[2] |
D. Bresch, F. Couderc, P. Noble and J. -P. Vila, New extended formulations of euler-korteweg equations based on a generalization of the quantum bohm identity, arXiv: 1503.08678, 2015. |
[3] |
D. Bresch, B. Desjardins and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part ii existence of global κ-entropy solutions to the compressible navier-stokes systems with degenerate viscosities, J. Math. Pures Appl., 4 (2015), 801-836.
doi: 10.1016/j.matpur.2015.05.004. |
[4] |
D. Bresch, E. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic incompressible fluid models, Journal of Math. Fluid Mech., 3 (2007), 377-397.
doi: 10.1007/s00021-005-0204-4. |
[5] |
D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part i well posedness for zero mach number systems, Journal de Math. Pures. Appl., 4 (2015), 762-800.
doi: 10.1016/j.matpur.2015.05.003. |
[6] |
D. Bresch, A. Vasseur and C. Yu, Global existence of compressible Navier-Stokes equation with degenerates viscosities, In preparation, (2016). |
[7] |
R. Danchin and X. Liao, On the well-posedness of the full low Mach number limit system in general critical Besov spaces, Commun. Contemp. Math., 3 (2012), 125-0022.
doi: 10.1142/S0219199712500228. |
[8] |
J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 4 (2010), 854-856.
doi: 10.1016/j.na.2010.03.047. |
[9] |
M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. , (2015), 106-121.
doi: 10.1016/j.na.2015.07.006. |
[10] |
F. Jiang, A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Real World Appl., 3 (2011), 1733-1735.
doi: 10.1016/j.nonrwa.2010.11.005. |
[11] |
A. Jüngel, Global weak solutions to compressible navier-stokes equations for quantum fluids, SIAM J. Math. Anal., 3 (2010), 1025-1045.
doi: 10.1137/090776068. |
[12] |
A. Jüngel and D. Matthes, The derrida-lebowitz-speer-spohn equation: existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 6 (2008), 1996-2015.
doi: 10.1137/060676878. |
[13] |
C. D. Levermore, W. Sun and K. Trivisa, A low mach number limit of a dispersive navierstokes system, SIAM J. Math. Anal., 3 (2012), 1760-1807.
doi: 10.1137/100818765. |
[14] |
C. D. Levermore, W. R. Sun and K. Trivisa, Local well-posedness of a ghost effect system, Indiana Univ. Math. J., 2 (2009), 517-576. |
[15] |
X. Liao, A global existence result for a zero Mach number system, J. Math. Fluid Mech., 1 (2014), 77-103.
doi: 10.1007/s00021-013-0152-3. |
[16] |
P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
P. -L Lions, Mathematical Topics in Fluid Mechanics. Vol. 2 Compressible Models, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. |
[18] |
J. -C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos Trans R Soc Lond B Biol Sci, (1879), 231-256. |
[19] |
J. Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech., 3 (1999), 225-234.
doi: 10.1007/s000210050010. |
[20] |
Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit, Annu. Rev. Fluid Mech., 32 (2000), 779-811.
doi: 10.1146/annurev.fluid.32.1.779. |
[21] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser Boston, Inc. , Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[22] |
C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. Ⅰ (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
[1] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[2] |
Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084 |
[3] |
Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069 |
[4] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[5] |
Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141 |
[6] |
Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387 |
[7] |
Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030 |
[8] |
Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068 |
[9] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[10] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[11] |
Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255 |
[12] |
Eduard Feireisl, Hana Petzeltová. Low Mach number asymptotics for reacting compressible fluid flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 455-480. doi: 10.3934/dcds.2010.26.455 |
[13] |
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 |
[14] |
Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 |
[15] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[16] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[17] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[18] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[19] |
Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269 |
[20] |
Mimi Dai, Han Liu. Low modes regularity criterion for a chemotaxis-Navier-Stokes system. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2713-2735. doi: 10.3934/cpaa.2020118 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]