\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long-term stability for kdv solitons in weighted Hs spaces

  • Author Bio: E-mail address: pigottbj@wofford.edu
  • * Corresponding author: Sarah Raynor.

    * Corresponding author: Sarah Raynor.
Abstract Full Text(HTML) Related Papers Cited by
  • In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentially-weighted norms. Using a combination of the I-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restriction is due to a lack of global control of the unweighted perturbation.

    Mathematics Subject Classification: Primary: 35Q53, 35B35; Secondary: 37K40, 35B40, 37K45, 35Q51.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    T. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153-183.

    doi: 10.1098/rspa.1972.0074.

    [2]

    J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. (London) Ser. A, 344 (1975), 363-374.

    doi: 10.1098/rspa.1975.0106.

    [3]

    J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. (London) Ser. A, 411 (1987), 395-412.

    doi: 10.1098/rspa.1987.0073.

    [4] T. Buckmaster and H. Koch, The Korteweg-de Vries equation at H-1 regularity, arXiv: 1112.4657
    [5]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Fund. Anal., 211 (2004), 173-218.

    [6]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the instability of the nonlinear Schrodinger equation below the energy norm, Commun. Pure. Appl. Anal., 2 (2003), 33-50.

    [7]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31-54.

    [8]

    Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901.

    [9]

    N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.

    [10]

    Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219-254.

    doi: 10.1007/s002050100138.

    [11]

    Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations, revisited, Nonlinearity, 18 (2005), 391-427.

    doi: 10.1088/0951-7715/18/1/004.

    [12]

    Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.

    doi: 10.1007/s00208-007-0194-z.

    [13]

    F. Merle and L. Vega, L2 stability of solitons for the KdV equation, Int. Math. Res. Not., 13 (2003), 735-753.

    doi: 10.1155/S1073792803208060.

    [14]

    T. Mizumachi, Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., 32 (2001), 1050-1080.

    [15] T. Mizumachi and N. Tzvetkov, L2-stability of solitary waves for the KdV equation via Pego and Weinstein's method, preprint, arXiv: 1403.5321.
    [16]

    L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745-1776.

    [17]

    L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), 1979-2005.

    [18]

    R. Pego and M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 2 (1994), 305-349.

    [19]

    B. Pigott, Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations, Commun. Pure. Appl. Anal., 13 (2014), 389-418.

    doi: 10.3934/cpaa.2014.13.389.

    [20] B. Pigott and S. Raynor, Asymptotic stability for KdV solitons in weighted spaces via iteration, Submitted, (2013).
    [21]

    S. Raynor and G. Staffilani, Low regularity stability of solitons for the KdV equation, Commun. Pure. Appl. Anal., 2 (2003), 277-296.

    doi: 10.3934/cpaa.2003.2.277.

    [22]

    M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math, 39 (1986), 51-67.

    doi: 10.1002/cpa.3160390103.

  • 加载中
SHARE

Article Metrics

HTML views(216) PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return