March  2017, 16(2): 427-442. doi: 10.3934/cpaa.2017022

Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses

Department of Mathematics, Korea University, 2511, Sejong-Ro, Sejong, 30019, Korea

ahnik@korea.ac.kr

Received  February 2016 Revised  November 2016 Published  January 2017

In this paper, we examine a diffusive predator-prey model with Beddington-DeAngelis functional response and stage structure on prey under homogeneous Neumann boundary conditions, where the discrete time delay covers the period from the birth of immature prey to their maturity. We investigate the dynamics of their permanence and the extinction of the predator, and provide sufficient conditions for the global attractiveness and the locally asymptotical stability of the semi-trivial and coexistence equilibria.

Citation: Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022
References:
[1]

R. Arditi and J. Michalski, Nonlinear food web models and their responses to increased basal productivity, in Food Webs: Integration of Patterns and Dynamics (G. A. Polis and K. O. Winemiller eds. ), Chapman and Hall, London, (1995), 122–133. doi: 10.1007/978-1-4615-7007-3_12.  Google Scholar

[2]

U. BroseR. J. Williams and N. D. Martinez, Comment on pForaging adaptation and the relationship between food-web complexity and stabilityq, Science, 301 (2003), 918b.  doi: 10.1126/science.1085902 .  Google Scholar

[3]

G. CaristiK. P. Rybakowski and T. Wessolek, Persistence and spatial patterns in a onepredator-two-prey Lotka-Volterra model with diffusion, Annali di Mathematica Pura ed Applicata, 161 (1992), 345-377.  doi: 10.1007/BF01759645.  Google Scholar

[4]

W. Chen and M. Wang, Qualitative analysis of predator-prey models with BeddingtonDeAngelis functional response and diffusion, Math. Comp. Modelling, 42 (2005), 31-44.  doi: 10.1016/j.mcm.2005.05.013.  Google Scholar

[5]

B. DrosselP. G. Higgs and A. J. McKane, The influence of predator-prey population dynamics on the long-term evolution of food web structure, J. Theor. Biol., 208 (2001), 91-107.  doi: 10.1006/jtbi.2000.2203.  Google Scholar

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.  doi: 10.1017/S0308210500000895.  Google Scholar

[7]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.  doi: 10.1137/0520025.  Google Scholar

[8]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.  doi: 10.2307/1939378.  Google Scholar

[9]

D. KeshA. K. Sarkar and A. B. Roy, Persistence of two prey-one predator system with ratio-dependent predator influence, Math. Meth. Appl. Sci., 23 (2000), 347-356.  doi: 10.1002/(SICI)1099-1476(20000310)23:4<347::AID-MMA117>3.0.CO;2-F.  Google Scholar

[10]

W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl., 335 (2007), 498-523.  doi: 10.1016/j.jmaa.2007.01.089.  Google Scholar

[11]

W. Ko and I. Ahn, Local stability and bifurcation of a general diffusive consumer-resource model with maturation delay, preprint. Google Scholar

[12]

W. KoS. Liu and I. Ahn, Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1715-1733.  doi: 10.3934/dcdsb.2015.20.1715.  Google Scholar

[13]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[14]

Z. Lin, Time delayed parabolic system in a two-species competitive model with stage structure, J. Math. Anal. Appl., 315 (2006), 202-215.  doi: 10.1016/j.jmaa.2005.06.012 .  Google Scholar

[15]

S. Liu and E. Beretta, A stage-structured predator-prey model with the Beddington-DeAngelis type, SIAM J. Appl. Math., 66 (2006), 1101-1129.  doi: 10.1137/050630003.  Google Scholar

[16]

S. Liu and J. Zhang, Coexistence and stability of predator-prey model with BeddingtonDeAngelis functional response and stage structure, J. Math. Anal. Appl., 342 (2008), 446-460.  doi: 10.1016/j.jmaa.2007.12.038.  Google Scholar

[17]

R. M. May, Stability and complexity in model ecosystems, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), p887.  doi: 10.1109/TSMC.1976.4309488.  Google Scholar

[18]

J. D. Murray, Mathematical Biology Ⅰ: An Introduction, 3rd edition, Interdisciplinary Applied Mathematics, vol. 17, Springer, New York, 2002. doi: 10.1007/b98868.  Google Scholar

[19]

J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, 3rd edition, Interdisciplinary Applied Mathematics, vol. 18, Springer, New York, 2003. doi: 10.1007/b98869.  Google Scholar

[20]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd edition, Interdisciplinary Applied Mathematics, Springer, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[21]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751-779.  doi: 10.1006/jmaa.1996.0111.  Google Scholar

[22]

S. Ruan and X.-Q. Zhao, Persistence and extinction in two species reaction-diffusion systems with delays, J. Differential Equations, 156 (1999), 71-92.  doi: 10.1006/jdeq.1998.3599.  Google Scholar

[23]

H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM J. Appl. Math., 42 (1982), 27-43.  doi: 10.1137/0142003.  Google Scholar

[24]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Canad. Appl. Math. Quart., 11 (2003), 303-319.   Google Scholar

[25]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 5 (2011), 273-291.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[26]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.  Google Scholar

show all references

References:
[1]

R. Arditi and J. Michalski, Nonlinear food web models and their responses to increased basal productivity, in Food Webs: Integration of Patterns and Dynamics (G. A. Polis and K. O. Winemiller eds. ), Chapman and Hall, London, (1995), 122–133. doi: 10.1007/978-1-4615-7007-3_12.  Google Scholar

[2]

U. BroseR. J. Williams and N. D. Martinez, Comment on pForaging adaptation and the relationship between food-web complexity and stabilityq, Science, 301 (2003), 918b.  doi: 10.1126/science.1085902 .  Google Scholar

[3]

G. CaristiK. P. Rybakowski and T. Wessolek, Persistence and spatial patterns in a onepredator-two-prey Lotka-Volterra model with diffusion, Annali di Mathematica Pura ed Applicata, 161 (1992), 345-377.  doi: 10.1007/BF01759645.  Google Scholar

[4]

W. Chen and M. Wang, Qualitative analysis of predator-prey models with BeddingtonDeAngelis functional response and diffusion, Math. Comp. Modelling, 42 (2005), 31-44.  doi: 10.1016/j.mcm.2005.05.013.  Google Scholar

[5]

B. DrosselP. G. Higgs and A. J. McKane, The influence of predator-prey population dynamics on the long-term evolution of food web structure, J. Theor. Biol., 208 (2001), 91-107.  doi: 10.1006/jtbi.2000.2203.  Google Scholar

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.  doi: 10.1017/S0308210500000895.  Google Scholar

[7]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.  doi: 10.1137/0520025.  Google Scholar

[8]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.  doi: 10.2307/1939378.  Google Scholar

[9]

D. KeshA. K. Sarkar and A. B. Roy, Persistence of two prey-one predator system with ratio-dependent predator influence, Math. Meth. Appl. Sci., 23 (2000), 347-356.  doi: 10.1002/(SICI)1099-1476(20000310)23:4<347::AID-MMA117>3.0.CO;2-F.  Google Scholar

[10]

W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl., 335 (2007), 498-523.  doi: 10.1016/j.jmaa.2007.01.089.  Google Scholar

[11]

W. Ko and I. Ahn, Local stability and bifurcation of a general diffusive consumer-resource model with maturation delay, preprint. Google Scholar

[12]

W. KoS. Liu and I. Ahn, Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1715-1733.  doi: 10.3934/dcdsb.2015.20.1715.  Google Scholar

[13]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[14]

Z. Lin, Time delayed parabolic system in a two-species competitive model with stage structure, J. Math. Anal. Appl., 315 (2006), 202-215.  doi: 10.1016/j.jmaa.2005.06.012 .  Google Scholar

[15]

S. Liu and E. Beretta, A stage-structured predator-prey model with the Beddington-DeAngelis type, SIAM J. Appl. Math., 66 (2006), 1101-1129.  doi: 10.1137/050630003.  Google Scholar

[16]

S. Liu and J. Zhang, Coexistence and stability of predator-prey model with BeddingtonDeAngelis functional response and stage structure, J. Math. Anal. Appl., 342 (2008), 446-460.  doi: 10.1016/j.jmaa.2007.12.038.  Google Scholar

[17]

R. M. May, Stability and complexity in model ecosystems, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), p887.  doi: 10.1109/TSMC.1976.4309488.  Google Scholar

[18]

J. D. Murray, Mathematical Biology Ⅰ: An Introduction, 3rd edition, Interdisciplinary Applied Mathematics, vol. 17, Springer, New York, 2002. doi: 10.1007/b98868.  Google Scholar

[19]

J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, 3rd edition, Interdisciplinary Applied Mathematics, vol. 18, Springer, New York, 2003. doi: 10.1007/b98869.  Google Scholar

[20]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd edition, Interdisciplinary Applied Mathematics, Springer, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[21]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751-779.  doi: 10.1006/jmaa.1996.0111.  Google Scholar

[22]

S. Ruan and X.-Q. Zhao, Persistence and extinction in two species reaction-diffusion systems with delays, J. Differential Equations, 156 (1999), 71-92.  doi: 10.1006/jdeq.1998.3599.  Google Scholar

[23]

H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM J. Appl. Math., 42 (1982), 27-43.  doi: 10.1137/0142003.  Google Scholar

[24]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Canad. Appl. Math. Quart., 11 (2003), 303-319.   Google Scholar

[25]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 5 (2011), 273-291.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[26]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.  Google Scholar

[1]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[2]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[3]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[4]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[7]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[8]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[9]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[10]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[13]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[16]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[19]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[20]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (96)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]