March  2017, 16(2): 493-512. doi: 10.3934/cpaa.2017025

Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

2. 

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

3. 

Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

*Corresponding author

Received  April 2016 Revised  November 2016 Published  January 2017

In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentrate at the minimum points of the potential V. Moreover, the monotonicity of f(s)=s and the so-called Ambrosetti-Rabinowitz condition are not required.

Citation: Minbo Yang, Jianjun Zhang, Yimin Zhang. Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (2) : 493-512. doi: 10.3934/cpaa.2017025
References:
[1]

C. O. AlvesJ. O. Marcos do and M. A. S. Souto, Local mountain-pass for a class of elliptic problems in ${{\mathbb{R}}^{N}}$ involving critical growth, Nonlinear Anal., 46 (2001), 495-510. doi: 10.1016/S0362-546X(00)00125-5. Google Scholar

[2]

C. O. Alves and M. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinburgh, 146A (2016), 23-58. doi: 10.1017/S0308210515000311. Google Scholar

[3]

C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257 (2014), 4133-4164. doi: 10.1016/j.jde.2014.08.004. Google Scholar

[4]

C. O. AlvesD. CassaniC. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation inR2, J. Differential Equations, 261 (2016), 1933-1972. doi: 10.1016/j.jde.2016.04.021. Google Scholar

[5]

H. Berestycki and P. L Lions, Nonlinear scalar field equations Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal, 82 (1983), 313-346. doi: 10.1007/BF00250555. Google Scholar

[6]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3. Google Scholar

[7]

J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete Contin. Dynam. Syst., 19 (2007), 255-269. doi: 10.3934/dcds.2007.19.255. Google Scholar

[8]

J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899. doi: 10.4171/JEMS/407. Google Scholar

[9]

J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001. doi: 10.1090/S0002-9947-09-04746-1. Google Scholar

[10]

J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Memoirs of the American Mathematical Society, 229 (2014). Google Scholar

[11]

J. Byeon and Z.Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8. Google Scholar

[12]

C. BonannoP. d'AveniaM. Ghimenti and M. Squassina, Soliton dynamics for the generalized Choquard equation, J. Math.Anal.Appl., 417 (2014), 180-199. doi: 10.1016/j.jmaa.2014.02.063. Google Scholar

[13]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure. Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. Google Scholar

[14]

S. CingolaniS. Secchi and M. Squassina, Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh, 140A (2010), 973-1009. doi: 10.1017/S0308210509000584. Google Scholar

[15]

M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar

[16]

M. del Pino and P. Felmer, Multi-peak bound states of nonlinear Schrödinger equations, Annales Inst. H. Poincaré Analyse Non Linéaire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[17]

M. del Pino and P. L. Felmer, Spike-layered solutions of singularlyly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J, 48 (1999), 883-898. doi: 10.1512/iumj.1999.48.1596. Google Scholar

[18]

P. D'AveniaA. Pomponio and D. Ruiz, Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009. Google Scholar

[19]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0. Google Scholar

[21]

E. P. Gross, Physics of Many-Particle Systems, Vol. 1, Gordon Breach, New York, 1996.Google Scholar

[22]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equationl, Stud. Appl. Math., 57 (1977), 93-105. Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, 2001.Google Scholar

[24]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194. Google Scholar

[25]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal. TMA, 4 (1980), 1063-1073. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[26]

P. L. Lions, Compactness and topological methods for some nonlinear variational problems of mathematical physics, in Nonlinear Problems: Present and Future (A. Bishop, D. Campbell and B. Nicolaenko eds. ), North Holland (1982), 17-34. Google Scholar

[27]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case Ⅰ. Ⅱ, Annales Inst. H. Poincaré Analyse Non Linéaire, 1 (1984), 109-145,223-283. Google Scholar

[28]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3. Google Scholar

[29]

M. Macr`ı and M. Nolasco, Stationary solutions for the non-linear Hartree equation with a slowly varying potential, NoDEA, 16 (2009), 681-715. doi: 10.1007/s00030-009-0030-0. Google Scholar

[30]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579. doi: 10.1090/S0002-9947-2014-06289-2. Google Scholar

[31]

V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52 (2015), 199-235. doi: 10.1007/s00526-014-0709-x. Google Scholar

[32]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal, 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007. Google Scholar

[33]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Commun. Pure Appl. Math, 48 (1995), 731-768. doi: 10.1002/cpa.3160480704. Google Scholar

[34]

M. Nolasco, Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential, Comm. Pure Appl. Anal., 9 (2010), 1411-1419. doi: 10.3934/cpaa.2010.9.1411. Google Scholar

[35]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519. doi: 10.1080/03605308808820585. Google Scholar

[36]

R. Penrose, On gravity's role in quantum state reduction, Gen. Rel. Grav., 28 (1996), 581-600. doi: 10.1007/BF02105068. Google Scholar

[37]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939. doi: 10.1098/rsta.1998.0256. Google Scholar

[38]

R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Alfred A. Knopf, Inc. , New York, 2005 Google Scholar

[39]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. Google Scholar

[40]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1997), 149-162. Google Scholar

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842-3856. doi: 10.1016/j.na.2010.01.021. Google Scholar

[42]

X. Sun and Y. Zhang, Multi-peak solution for nonlinear magnetic Choquard type equation, J. Math. Phys., 55 (0315), 031508. doi: 10.1063/1.4868481. Google Scholar

[43]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50 (0129), 012905. doi: 10.1063/1.3060169. Google Scholar

[44]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. Google Scholar

[45]

M. Yang and Y. Ding, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Comm. Pure Appl. Anal., 12 (2013), 771-783. doi: 10.3934/cpaa.2013.12.771. Google Scholar

[46]

V. C. Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. doi: 10.2307/2939286. Google Scholar

[47]

J. J. ZhangZ. J. Chen and W. M. Zou, Standing Waves for nonlinear Schrödinger Equations involving critical growth, J. Lond. Math. Soc., 90 (2014), 827-844. doi: 10.1112/jlms/jdu054. Google Scholar

[48]

J. J. Zhang and W. M. Zou, Solutions concentrating around the saddle points of the potential for Schrödinger equations involving critical growth, Calc. Var. Partial Differ. Equ., 54 (2015), 4119-4142. doi: 10.1007/s00526-015-0933-z. Google Scholar

show all references

References:
[1]

C. O. AlvesJ. O. Marcos do and M. A. S. Souto, Local mountain-pass for a class of elliptic problems in ${{\mathbb{R}}^{N}}$ involving critical growth, Nonlinear Anal., 46 (2001), 495-510. doi: 10.1016/S0362-546X(00)00125-5. Google Scholar

[2]

C. O. Alves and M. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinburgh, 146A (2016), 23-58. doi: 10.1017/S0308210515000311. Google Scholar

[3]

C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257 (2014), 4133-4164. doi: 10.1016/j.jde.2014.08.004. Google Scholar

[4]

C. O. AlvesD. CassaniC. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation inR2, J. Differential Equations, 261 (2016), 1933-1972. doi: 10.1016/j.jde.2016.04.021. Google Scholar

[5]

H. Berestycki and P. L Lions, Nonlinear scalar field equations Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal, 82 (1983), 313-346. doi: 10.1007/BF00250555. Google Scholar

[6]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3. Google Scholar

[7]

J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete Contin. Dynam. Syst., 19 (2007), 255-269. doi: 10.3934/dcds.2007.19.255. Google Scholar

[8]

J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899. doi: 10.4171/JEMS/407. Google Scholar

[9]

J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001. doi: 10.1090/S0002-9947-09-04746-1. Google Scholar

[10]

J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Memoirs of the American Mathematical Society, 229 (2014). Google Scholar

[11]

J. Byeon and Z.Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8. Google Scholar

[12]

C. BonannoP. d'AveniaM. Ghimenti and M. Squassina, Soliton dynamics for the generalized Choquard equation, J. Math.Anal.Appl., 417 (2014), 180-199. doi: 10.1016/j.jmaa.2014.02.063. Google Scholar

[13]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure. Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. Google Scholar

[14]

S. CingolaniS. Secchi and M. Squassina, Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh, 140A (2010), 973-1009. doi: 10.1017/S0308210509000584. Google Scholar

[15]

M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar

[16]

M. del Pino and P. Felmer, Multi-peak bound states of nonlinear Schrödinger equations, Annales Inst. H. Poincaré Analyse Non Linéaire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[17]

M. del Pino and P. L. Felmer, Spike-layered solutions of singularlyly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J, 48 (1999), 883-898. doi: 10.1512/iumj.1999.48.1596. Google Scholar

[18]

P. D'AveniaA. Pomponio and D. Ruiz, Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009. Google Scholar

[19]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0. Google Scholar

[21]

E. P. Gross, Physics of Many-Particle Systems, Vol. 1, Gordon Breach, New York, 1996.Google Scholar

[22]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equationl, Stud. Appl. Math., 57 (1977), 93-105. Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, 2001.Google Scholar

[24]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194. Google Scholar

[25]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal. TMA, 4 (1980), 1063-1073. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[26]

P. L. Lions, Compactness and topological methods for some nonlinear variational problems of mathematical physics, in Nonlinear Problems: Present and Future (A. Bishop, D. Campbell and B. Nicolaenko eds. ), North Holland (1982), 17-34. Google Scholar

[27]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case Ⅰ. Ⅱ, Annales Inst. H. Poincaré Analyse Non Linéaire, 1 (1984), 109-145,223-283. Google Scholar

[28]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3. Google Scholar

[29]

M. Macr`ı and M. Nolasco, Stationary solutions for the non-linear Hartree equation with a slowly varying potential, NoDEA, 16 (2009), 681-715. doi: 10.1007/s00030-009-0030-0. Google Scholar

[30]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579. doi: 10.1090/S0002-9947-2014-06289-2. Google Scholar

[31]

V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52 (2015), 199-235. doi: 10.1007/s00526-014-0709-x. Google Scholar

[32]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal, 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007. Google Scholar

[33]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Commun. Pure Appl. Math, 48 (1995), 731-768. doi: 10.1002/cpa.3160480704. Google Scholar

[34]

M. Nolasco, Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential, Comm. Pure Appl. Anal., 9 (2010), 1411-1419. doi: 10.3934/cpaa.2010.9.1411. Google Scholar

[35]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519. doi: 10.1080/03605308808820585. Google Scholar

[36]

R. Penrose, On gravity's role in quantum state reduction, Gen. Rel. Grav., 28 (1996), 581-600. doi: 10.1007/BF02105068. Google Scholar

[37]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939. doi: 10.1098/rsta.1998.0256. Google Scholar

[38]

R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Alfred A. Knopf, Inc. , New York, 2005 Google Scholar

[39]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. Google Scholar

[40]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1997), 149-162. Google Scholar

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842-3856. doi: 10.1016/j.na.2010.01.021. Google Scholar

[42]

X. Sun and Y. Zhang, Multi-peak solution for nonlinear magnetic Choquard type equation, J. Math. Phys., 55 (0315), 031508. doi: 10.1063/1.4868481. Google Scholar

[43]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50 (0129), 012905. doi: 10.1063/1.3060169. Google Scholar

[44]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. Google Scholar

[45]

M. Yang and Y. Ding, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Comm. Pure Appl. Anal., 12 (2013), 771-783. doi: 10.3934/cpaa.2013.12.771. Google Scholar

[46]

V. C. Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. doi: 10.2307/2939286. Google Scholar

[47]

J. J. ZhangZ. J. Chen and W. M. Zou, Standing Waves for nonlinear Schrödinger Equations involving critical growth, J. Lond. Math. Soc., 90 (2014), 827-844. doi: 10.1112/jlms/jdu054. Google Scholar

[48]

J. J. Zhang and W. M. Zou, Solutions concentrating around the saddle points of the potential for Schrödinger equations involving critical growth, Calc. Var. Partial Differ. Equ., 54 (2015), 4119-4142. doi: 10.1007/s00526-015-0933-z. Google Scholar

[1]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

[2]

Hui Zhang, Jun Wang, Fubao Zhang. Semiclassical states for fractional Choquard equations with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 519-538. doi: 10.3934/cpaa.2019026

[3]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[4]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[5]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[6]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[7]

Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299

[8]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[9]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[10]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[11]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[12]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[13]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[14]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[15]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[16]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[17]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[18]

Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173

[19]

E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731

[20]

Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (20)
  • HTML views (6)
  • Cited by (4)

Other articles
by authors

[Back to Top]