In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentrate at the minimum points of the potential V. Moreover, the monotonicity of f(s)=s and the so-called Ambrosetti-Rabinowitz condition are not required.
Citation: |
[1] |
C. O. Alves, J. Marcos do O and M. A. S. Souto, Local mountain-pass for a class of elliptic problems in ${{\mathbb{R}}^{N}}$ involving critical growth, Nonlinear Anal., 46 (2001), 495-510. doi: 10.1016/S0362-546X(00)00125-5.![]() ![]() ![]() |
[2] |
C. O. Alves and M. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinburgh, 146A (2016), 23-58. doi: 10.1017/S0308210515000311.![]() ![]() ![]() |
[3] |
C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257 (2014), 4133-4164. doi: 10.1016/j.jde.2014.08.004.![]() ![]() ![]() |
[4] |
C. O. Alves, D. Cassani, C. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation inR2, J. Differential Equations, 261 (2016), 1933-1972. doi: 10.1016/j.jde.2016.04.021.![]() ![]() ![]() |
[5] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346. doi: 10.1007/BF00250555.![]() ![]() ![]() |
[6] |
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3.![]() ![]() ![]() |
[7] |
J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete Contin. Dynam. Syst., 19 (2007), 255-269. doi: 10.3934/dcds.2007.19.255.![]() ![]() ![]() |
[8] |
J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899. doi: 10.4171/JEMS/407.![]() ![]() ![]() |
[9] |
J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001. doi: 10.1090/S0002-9947-09-04746-1.![]() ![]() ![]() |
[10] |
J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Memoirs of the American Mathematical Society, 229 (2014). ![]() ![]() |
[11] |
J. Byeon and Z.-Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8.![]() ![]() ![]() |
[12] |
C. Bonanno, P. d'Avenia, M. Ghimenti and M. Squassina, Soliton dynamics for the generalized Choquard equation, J. Math.Anal.Appl., 417 (2014), 180-199. doi: 10.1016/j.jmaa.2014.02.063.![]() ![]() ![]() |
[13] |
W. X. Chen, C. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure. Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[14] |
S. Cingolani, S. Secchi and M. Squassina, Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh, 140A (2010), 973-1009. doi: 10.1017/S0308210509000584.![]() ![]() ![]() |
[15] |
M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950.![]() ![]() ![]() |
[16] |
M. del Pino and P. Felmer, Multi-peak bound states of nonlinear Schrödinger equations, Annales Inst. H. Poincaré Analyse Non Linéaire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7.![]() ![]() ![]() |
[17] |
M. del Pino and P. L. Felmer, Spike-layered solutions of singularlyly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48 (1999) 883-898. doi: 10.1512/iumj.1999.48.1596.![]() ![]() ![]() |
[18] |
P. D'Avenia, A. Pomponio and D. Ruiz, Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009.![]() ![]() ![]() |
[19] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[21] |
E. P. Gross, Physics of Many-Particle Systems, Vol. 1, Gordon Breach, New York, 1996.
![]() |
[22] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equationl, Stud. Appl. Math., 57 (1977), 93-105. ![]() ![]() |
[23] |
E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, 2001.
![]() |
[24] |
E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194. ![]() ![]() |
[25] |
P. L. Lions, The Choquard equation and related questions, Nonlinear Anal. TMA, 4 (1980), 1063-1073. doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
[26] |
P. L. Lions, Compactness and topological methods for some nonlinear variational problems of mathematical physics, in Nonlinear Problems: Present and Future (A. Bishop, D. Campbell and B. Nicolaenko eds. ), North Holland (1982), 17-34.
![]() ![]() |
[27] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case Ⅰ. Ⅱ, Annales Inst. H. Poincaré Analyse Non Linéaire, 1 (1984), 109-145,223-283.
![]() ![]() |
[28] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[29] |
M. Macr`ı and M. Nolasco, Stationary solutions for the non-linear Hartree equation with a slowly varying potential, NoDEA, 16 (2009), 681-715. doi: 10.1007/s00030-009-0030-0.![]() ![]() ![]() |
[30] |
V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579. doi: 10.1090/S0002-9947-2014-06289-2.![]() ![]() ![]() |
[31] |
V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52 (2015), 199-235. doi: 10.1007/s00526-014-0709-x.![]() ![]() ![]() |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[33] |
W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Commun. Pure Appl. Math., 48 (1995) 731-768. doi: 10.1002/cpa.3160480704.![]() ![]() ![]() |
[34] |
M. Nolasco, Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential, Comm. Pure Appl. Anal., 9 (2010), 1411-1419. doi: 10.3934/cpaa.2010.9.1411.![]() ![]() ![]() |
[35] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519. doi: 10.1080/03605308808820585.![]() ![]() ![]() |
[36] |
R. Penrose, On gravity's role in quantum state reduction, Gen. Rel. Grav., 28 (1996), 581-600. doi: 10.1007/BF02105068.![]() ![]() ![]() |
[37] |
R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939. doi: 10.1098/rsta.1998.0256.![]() ![]() ![]() |
[38] |
R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Alfred A. Knopf, Inc. , New York, 2005
![]() ![]() |
[39] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631.![]() ![]() ![]() |
[40] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1997), 149-162. ![]() ![]() |
[41] |
S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842-3856. doi: 10.1016/j.na.2010.01.021.![]() ![]() ![]() |
[42] |
X. Sun and Y. Zhang, Multi-peak solution for nonlinear magnetic Choquard type equation, J. Math. Phys., 55 (2014), 031508. doi: 10.1063/1.4868481.![]() ![]() ![]() |
[43] |
J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50 (2009), 012905. doi: 10.1063/1.3060169.![]() ![]() ![]() |
[44] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. ![]() ![]() |
[45] |
M. Yang and Y. Ding, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Comm. Pure Appl. Anal., 12 (2013), 771-783. doi: 10.3934/cpaa.2013.12.771.![]() ![]() ![]() |
[46] |
V. C. Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. doi: 10.2307/2939286.![]() ![]() ![]() |
[47] |
J. J. Zhang, Z. J. Chen, W. M. Zou, Standing Waves for nonlinear Schrödinger Equations involving critical growth, J. Lond. Math. Soc., 90 (2014), 827-844. doi: 10.1112/jlms/jdu054.![]() ![]() ![]() |
[48] |
J. J. Zhang and W. M. Zou, Solutions concentrating around the saddle points of the potential for Schrödinger equations involving critical growth, Calc. Var. Partial Differ. Equ., 54 (2015), 4119-4142. doi: 10.1007/s00526-015-0933-z.![]() ![]() ![]() |