Advanced Search
Article Contents
Article Contents

The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem

  • * Corresponding author

    * Corresponding author 
supported by National Natural Science Foundation of China(No. 11471267); the Fundamental Research Funds for the Central Universities (No. SWU1109075)
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate the existence and nonexistence of ground state nodal solutions to a class of Kirchhoff type problems

    $ -\left( a+b\int_{\Omega }{|}\nabla u{{|}.{2}}dx \right)\vartriangle u=\lambda u+|u{{|}.{2}}u,\ \ u\in H_{0}.{1}(\Omega ), $

    where $a, b>0$, $\lambda < a\lambda_1$, $\lambda_1$ is the principal eigenvalue of $(-\triangle, H_0.{1}(\Omega))$. With the help of the Nehari manifold, we obtain that there is $\Lambda>0$ such that the Kirchhoff type problem possesses at least one ground state nodal solution $u_b$ for all $0 < b < \Lambda$ and $\lambda < a\lambda_1$ and prove that its energy is strictly larger than twice that of ground state solutions. Moreover, we give a convergence property of $u_b$ as $b\searrow 0$. Besides, we firstly establish the nonexistence result of nodal solutions for all $b\geq\Lambda$. This paper can be regarded as the extension and complementary work of W. Shuai (2015)[21], X.H. Tang and B.T. Cheng (2016)[22].

    Mathematics Subject Classification: Primary: 35J20; Secondary: 35J65.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330.


    T. Bartsch, Z. L. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 25–42.

    doi: 10.1142/9789812704283_0027.


    T. Bartsch and T. Weth, Three nodal solutions of singular perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 22 (2005), 259–281.

    doi: 10.1016/j.anihpc.2004.07.005.


    T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1–18.

    doi: 10.1007/BF02787822.


    S. Bernstein, Sur une classe d'´equations fonctionnelles aux d´eriv´ees partielles, Bull. Acad. Sci. URSS. S´er. (Izvestia Akad. Nauk SSSR), 4 (1940), 17–26.


    K. J. Brown and T. F. Wu, A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function, J. Math. Anal. Appl., 337 (2008), 1326–1336.

    doi: 10.1016/j.jmaa.2007.04.064.


    K. J. Brown and Y. P. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481–499.

    doi: 10.1016/S0022-0396(03)00121-9.


    Y. B. Deng, S. J. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3, Journal of Functional Analysis, 269 (2015), 3500–3527.

    doi: 10.1016/j.jfa.2015.09.012.


    G. M. Figueiredo and R. G. Nascimento, Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48–60.

    doi: 10.1002/mana.201300195.


    Y. He, G. B. Li and S. J. Peng, Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483–510.

    doi: 10.1515/ans-2014-0214.


    X. M. He and W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura. Appl., 193 (2014), 473–500.

    doi: 10.1007/s10231-012-0286-6.

    [12] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

    C. Y. Lei, J. F. Liao and C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521–538.

    doi: 10.1016/j.jmaa.2014.07.031.


    S. H. Liang and J. H. Zhang, Existence of solutions for Kirchhoff type problems with critical nonlinearity in R3, Nonlinear Anal. Real World Appl., 17 (2014), 126–136.

    doi: 10.1016/j.nonrwa.2013.10.011.

    [15] J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proceedings of International Symposium, Inst. Mat. , Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud. , vol. 30, North-Holland, Amsterdam, 1978, pp. 284–346.

    J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in RN, J. Math. Anal. Appl., 429 (2015), 1153–1172.

    doi: 10.1016/j.jmaa.2015.04.066.


    S. S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965–982.

    doi: 10.1016/j.jmaa.2015.07.033.


    A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243.

    doi: 10.1016/j.jmaa.2011.05.021.


    A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287.

    doi: 10.1016/j.na.2008.02.011.


    D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 257 (2014), 1168–1193.

    doi: 10.1016/j.jde.2014.05.002.


    W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 259 (2015), 1256–1274.

    doi: 10.1016/j.jde.2015.02.040.


    X. H. Tang and B. T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016), 2384–2402.

    doi: 10.1016/j.jde.2016.04.032.


    J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314–2351.

    doi: 10.1016/j.jde.2012.05.023.


    Z. P. Wang and H. S. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3, Calc. Var., 52 (2015), 927–943.

    doi: 10.1007/s00526-014-0738-5.


    L. P. Xu and H. B. Chen, Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent, Advances in Difference Equations, 1 (2016), 1–14.

    doi: 10.1186/s13662-016-0828-0.


    H. Zhang and F. B. Zhang, Ground states for the nonlinear Kirchhoff type problems, J. Math. Anal. Appl., 423 (2015), 1671–1692.

    doi: 10.1016/j.jmaa.2014.10.062.


    J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015), 387–404.

    doi: 10.1016/j.jmaa.2015.03.032.


    Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463.

    doi: 10.1016/j.jmaa.2005.06.102.

    [29] W. M. Zou, Sign-Changing Critical Point Theory, Spring, New York, 2008.
  • 加载中

Article Metrics

HTML views(315) PDF downloads(288) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint