March  2017, 16(2): 699-718. doi: 10.3934/cpaa.2017034

A sustainability condition for stochastic forest model

1. 

Promotive Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Nishi-ku, Fukuoka 812-8581, Japan

2. 

Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

3. 

Department of Applied Physics, Graduate School of Engineering, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Received  May 2016 Revised  November 2016 Published  January 2017

Fund Project: This work was supported by JSPS KAKENHI Grant Number 20140047, This work was supported by JSPS Grant-in-Aid for Scientific Research (No. 26400166)

A stochastic forest model of young and old age class trees is studied. First, we prove existence, uniqueness and boundedness of global nonnegative solutions. Second, we investigate asymptotic behavior of solutions by giving a sufficient condition for sustainability of the forest. Under this condition, we show existence of a Borel invariant measure. Third, we present several sufficient conditions for decline of the forest. Finally, we give some numerical examples.

Citation: TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure & Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034
References:
[1]

M. Ya. Antonovsky, Impact of the factors of the environment on the dynamics of population (mathematical model), in Proc. Soviet-American Symp. Comprehensive Analysis of the Environment, Tbilisi 1974, Leningrad: Hydromet, (1975), 218-230.Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1972. Google Scholar

[3]

L. H. Chuan and A. Yagi, Dynamical system for forest kinematic model, Adv. Math. Sci. Appl., 16 (2006), 393-409. Google Scholar

[4]

L. H. ChuanT. Tsujikawa and A. Yagi, Asymptotic behavior of solutions for forest kinematic model, Funkcial. Ekvac., 49 (2006), 427-449. doi: 10.1619/fesi.49.427. Google Scholar

[5]

L. H. ChuanT. Tsujikawa and A. Yagi, Stationary solutions to forest kinematic model, Glasg. Math. J., 51 (2009), 1-17. doi: 10.1017/S0017089508004485. Google Scholar

[6]

S. R. Foguel, The ergodic theory of positive operators on continuous functions, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 19-51. Google Scholar

[7] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976. Google Scholar
[8]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, NorthHolland, Tokyo, 1981. Google Scholar

[9]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2. Google Scholar

[10]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4. Google Scholar

[11]

Yu.A. KuznetsovM.Ya. AntonovskyV. N. Biktashev and E. A. Aponina, A cross-diffusion model of forest boundary dynamics, J. Math. Biol., 32 (1994), 219-232. doi: 10.1007/BF00163879. Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. Google Scholar

[13]

L. Michael, Conservative Markov processes on a topological space, Isr. J. Math., 8 (1970), 165-186. doi: 10.1007/BF02771312. Google Scholar

[14]

L. T. H. Nguyen and T.V. Ta, Dynamics of a stochastic ratio-dependent predator-prey model, Anal. Appl. (Singap.), 9 (2011), 329-344. doi: 10.1142/S0219530511001868. Google Scholar

[15]

T. ShiraiL. H. Chuan and A. Yagi, Asymptotic behavior of solutions for forest kinematic model under Dirichlet conditions, Sci. Math. Jpn., 66 (2007), 289-301. Google Scholar

[16]

T.V. TaL. T. H. Nguyen and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73. Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010. Google Scholar

show all references

References:
[1]

M. Ya. Antonovsky, Impact of the factors of the environment on the dynamics of population (mathematical model), in Proc. Soviet-American Symp. Comprehensive Analysis of the Environment, Tbilisi 1974, Leningrad: Hydromet, (1975), 218-230.Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1972. Google Scholar

[3]

L. H. Chuan and A. Yagi, Dynamical system for forest kinematic model, Adv. Math. Sci. Appl., 16 (2006), 393-409. Google Scholar

[4]

L. H. ChuanT. Tsujikawa and A. Yagi, Asymptotic behavior of solutions for forest kinematic model, Funkcial. Ekvac., 49 (2006), 427-449. doi: 10.1619/fesi.49.427. Google Scholar

[5]

L. H. ChuanT. Tsujikawa and A. Yagi, Stationary solutions to forest kinematic model, Glasg. Math. J., 51 (2009), 1-17. doi: 10.1017/S0017089508004485. Google Scholar

[6]

S. R. Foguel, The ergodic theory of positive operators on continuous functions, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 19-51. Google Scholar

[7] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976. Google Scholar
[8]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, NorthHolland, Tokyo, 1981. Google Scholar

[9]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2. Google Scholar

[10]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4. Google Scholar

[11]

Yu.A. KuznetsovM.Ya. AntonovskyV. N. Biktashev and E. A. Aponina, A cross-diffusion model of forest boundary dynamics, J. Math. Biol., 32 (1994), 219-232. doi: 10.1007/BF00163879. Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. Google Scholar

[13]

L. Michael, Conservative Markov processes on a topological space, Isr. J. Math., 8 (1970), 165-186. doi: 10.1007/BF02771312. Google Scholar

[14]

L. T. H. Nguyen and T.V. Ta, Dynamics of a stochastic ratio-dependent predator-prey model, Anal. Appl. (Singap.), 9 (2011), 329-344. doi: 10.1142/S0219530511001868. Google Scholar

[15]

T. ShiraiL. H. Chuan and A. Yagi, Asymptotic behavior of solutions for forest kinematic model under Dirichlet conditions, Sci. Math. Jpn., 66 (2007), 289-301. Google Scholar

[16]

T.V. TaL. T. H. Nguyen and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73. Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010. Google Scholar

Figure 1.  Sample trajectories of $u_t$ and $v_t$ of (2) with parameters: $a=2, b=1, c=2.5, f=4, h=1, \rho=5, \sigma=0.5$ and initial value $(u_0, v_0)=(2, 1).$ The left figure illustrates a sample trajectory of $(u_t, v_t)$ in the phase space; the right figure illustrates sample trajectories of $u_t$ and $v_t$ along $t\in [0,100]$
Figure 2.  Distribution of $(u_t, v_t)$ of (2) at $t=10^3$. The parameters and initial value are taken as in the legend of Fig. 1
Figure 3.  Graphs of $\mathbb Eu$ and $\mathbb Ev$ along $ t\in [0, 20]$. The parameters and initial value are taken as in the legend of Fig. 1
Figure 4.  Sample trajectory of two processes $I$ and $J$ defined by $I(t)=\frac{1}{t}\int_0^t u_sds$ and $J(t)=\frac{1}{t}\int_0^t v_sds$ along $ t\in [0,100].$ The parameters and initial value are taken as in the legend of Fig. 1
Figure 5.  Graph of probability functions $R$ and $S$ defined by $R(t)=\mathbb P\{(u_t, v_t)\in A; (u_0, v_0)=(2, 1)\}$ and $S(t)=\mathbb P\{(u_t, v_t)\in A; (u_0, v_0)=(3, 4)\}$ along $t\in [50,100], $ where $A=[0.5, 30]\times[0.1, 20]$ and the parameters of (2) are taken as in the legend of Fig. 1. These functions are calculated on the basis of 2000 sample trajectories of $(u_t, v_t)$ corresponding to each initial value
Figure 6.  Decline of forest under the effect of noise with large intensity $\sigma$. Here, $a=3, b=4, c=5, f=6, h=2, \rho=7, \sigma=4$ and initial value $(u_0, v_0)=(4, 3)$. The left figure is a sample trajectory of $(u_t, v_t)$ in the phase space; the right figure is a sample trajectory of $u$ and $v$ along $t\in [0, 1]$
Figure 7.  Decline of forest when the mortality $h$ of old trees is large. Here, $a=3, b=4, c=5, f=6, h=3.82, \rho=7, \sigma=0.25$ and initial value $(u_0, v_0)=(4, 3).$ The figure gives a graph of $\mathbb Eu$ and $\mathbb Ev$ along $t\in [0, 10]$
Table 1.  Stability and instability of stationary solutions of (1)
h(0, h*)(h*, h*)(h*, ∞)
Ounstablestableglob. asymp. stable
P+stablestable
Punstable
h(0, h*)(h*, h*)(h*, ∞)
Ounstablestableglob. asymp. stable
P+stablestable
Punstable
[1]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[2]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[3]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[4]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[5]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[6]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[7]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[8]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[9]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[10]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[11]

A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097

[12]

Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025

[13]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[14]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[15]

Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359

[16]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[17]

Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182

[18]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[19]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[20]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[Back to Top]