May  2017, 16(3): 745-780. doi: 10.3934/cpaa.2017036

On the decay and stability of global solutions to the 3D inhomogeneous MHD system

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

2. 

Beijing Center for Mathematics and Information Interdisciplinary Sciences, China

Received  March 2016 Revised  January 2017 Published  February 2017

In this paper, we investigative the large time decay and stability to any given global smooth solutions of the 3D incompressible inhomogeneous MHD systems. We prove that given a solution $(a, u, B)$ of (2), the velocity field and the magnetic field decay to zero with an explicit rate, for $u$ which coincide with incompressible inhomogeneous Navier-Stokes equations [1]. In particular, we give the decay rate of higher order derivatives of $u$ and $B$ which are useful to prove our main stability result. For a large solution of (2) denoted by $(a, u, B)$, we show that a small perturbation of the initial data still generates a unique global smooth solution and the smooth solution keeps close to the reference solution $(a, u, B)$. At last, we should mention that the main results in this paper are concerned with large solutions.

Citation: Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036
References:
[1]

H. AbidiG. Gui and P. Zhang, On the decay and stability of global solutions to the 3 -D inhomogeneous Navier-Stokes equations, Communications on Pure and Applied Mathematics, 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[2]

H. AbidiG. Gui and P. Zhang, On the well-posedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Archive for Rational Mechanics and Analysis, 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[3]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.

[4]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, volume 22 of Studies in Mathematics and its Applications, North Holland, 1990.

[5]

H. Bahouri, J. -Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der mathematischen Wissenschaften. Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.

[6]

C. CaoD. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, Journal of Differential Equations, 254 (2013), 2661-2681.  doi: 10.1016/j.jde.2013.01.002.

[7]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Advances in Mathematics, 226 (2011), 1803-1822.  doi: 10.1016/j.aim.2010.08.017.

[8]

C. CaoJ. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM Journal on Mathematical Analysis, 46 (2014), 588-602.  doi: 10.1137/130937718.

[9]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Journal of Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.

[10]

J.-Y. CheminM. Paicu and P. Zhang, Global large solutions to 3-D inhomogeneous NavierStokes system with one slow variable, Journal of Differential Equations, 256 (2014), 223-252.  doi: 10.1016/j.jde.2013.09.004.

[11]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, 9 (2004), 353-386. 

[12]

R. Danchin, Fourier Analysis Methods for PDE's, 2005.

[13]

R. Danchin, The inviscid limit for density-dependent incompressible fluids, 15 (2006), 637-688.

[14]

R. Danchin and P. B. Mucha, Incompressible flows with piecewise constant density, Archive for Rational Mechanics and Analysis, 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[15]

R. Danchin and P. Zhang, Inhomogeneous Navier-Stokes equations in the half-space, with only bounded density, Journal of Functional Analysis, 267 (2014), 2371-2436.  doi: 10.1016/j.jfa.2014.07.017.

[16]

P. A. Davidson, An Introduction to Magnetohydrodynamics, volume 25 of Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1017/CBO9780511626333.

[17]

G. Duvaut and J.-L. Lions, Inéquations en thermóelasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[18]

I. Gallagher, D. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, 53 (2003), 1387-1424.

[19]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, Journal of Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.

[20]

A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Doklady Akademii Nauk, 216 (1974), 1008-1010. 

[21]

G. PonceR. RackeT. C Sideris and E. S Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Communications in Mathematical Physics, 159 (1994), 329-341. 

[22]

P. B. Mucha and R. Danchin, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Communications on Pure and Applied Mathematics, 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[23]

M. E Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Communications in Partial Differential Equations, 11 (1986), 733-763.  doi: 10.1080/03605308608820443.

[24]

Carasso S. Alfred. and T. Kato, On subordinated holomorphic semigroups, Trans. Amer. Math. Soc., 327 (1991), 867-878.  doi: 10.2307/2001827.

show all references

References:
[1]

H. AbidiG. Gui and P. Zhang, On the decay and stability of global solutions to the 3 -D inhomogeneous Navier-Stokes equations, Communications on Pure and Applied Mathematics, 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[2]

H. AbidiG. Gui and P. Zhang, On the well-posedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Archive for Rational Mechanics and Analysis, 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[3]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.

[4]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, volume 22 of Studies in Mathematics and its Applications, North Holland, 1990.

[5]

H. Bahouri, J. -Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der mathematischen Wissenschaften. Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.

[6]

C. CaoD. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, Journal of Differential Equations, 254 (2013), 2661-2681.  doi: 10.1016/j.jde.2013.01.002.

[7]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Advances in Mathematics, 226 (2011), 1803-1822.  doi: 10.1016/j.aim.2010.08.017.

[8]

C. CaoJ. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM Journal on Mathematical Analysis, 46 (2014), 588-602.  doi: 10.1137/130937718.

[9]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Journal of Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.

[10]

J.-Y. CheminM. Paicu and P. Zhang, Global large solutions to 3-D inhomogeneous NavierStokes system with one slow variable, Journal of Differential Equations, 256 (2014), 223-252.  doi: 10.1016/j.jde.2013.09.004.

[11]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, 9 (2004), 353-386. 

[12]

R. Danchin, Fourier Analysis Methods for PDE's, 2005.

[13]

R. Danchin, The inviscid limit for density-dependent incompressible fluids, 15 (2006), 637-688.

[14]

R. Danchin and P. B. Mucha, Incompressible flows with piecewise constant density, Archive for Rational Mechanics and Analysis, 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[15]

R. Danchin and P. Zhang, Inhomogeneous Navier-Stokes equations in the half-space, with only bounded density, Journal of Functional Analysis, 267 (2014), 2371-2436.  doi: 10.1016/j.jfa.2014.07.017.

[16]

P. A. Davidson, An Introduction to Magnetohydrodynamics, volume 25 of Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1017/CBO9780511626333.

[17]

G. Duvaut and J.-L. Lions, Inéquations en thermóelasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[18]

I. Gallagher, D. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, 53 (2003), 1387-1424.

[19]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, Journal of Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.

[20]

A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Doklady Akademii Nauk, 216 (1974), 1008-1010. 

[21]

G. PonceR. RackeT. C Sideris and E. S Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Communications in Mathematical Physics, 159 (1994), 329-341. 

[22]

P. B. Mucha and R. Danchin, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Communications on Pure and Applied Mathematics, 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[23]

M. E Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Communications in Partial Differential Equations, 11 (1986), 733-763.  doi: 10.1080/03605308608820443.

[24]

Carasso S. Alfred. and T. Kato, On subordinated holomorphic semigroups, Trans. Amer. Math. Soc., 327 (1991), 867-878.  doi: 10.2307/2001827.

[1]

Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002

[3]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic and Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[4]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[5]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[6]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[7]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[8]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[9]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[10]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[11]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[12]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[13]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 885-902. doi: 10.3934/dcds.2021141

[16]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[17]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[18]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

[19]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[20]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021204

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (145)
  • HTML views (141)
  • Cited by (1)

Other articles
by authors

[Back to Top]