May  2017, 16(3): 781-798. doi: 10.3934/cpaa.2017037

Dynamics of a nonlocal dispersal SIS epidemic model

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China

wtli@lzu.edu.cn (W.-T. Li)(Corresponding author)

Received  March 2016 Revised  January 2017 Published  February 2017

This paper is concerned with a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model with Dirichlet boundary condition, where the rates of disease transmission and recovery are assumed to be spatially heterogeneous. We introduce a basic reproduction number $R_0$ and establish threshold-type results on the global dynamic in terms of R0. More specifically, we show that if the basic reproduction number is less than one, then the disease will be extinct, and if the basic reproduction number is larger than one, then the disease will persist. Particularly, our results imply that the nonlocal dispersal of the infected individuals may suppress the spread of the disease even though in a high-risk domain.

Citation: Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[2]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165.

[3]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.

[4]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model. Ⅰ. Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.

[5]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.

[6]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.

[7]

J. Garcĺa-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.

[8]

J. Garcĺa-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.  doi: 10.3934/cpaa.2009.8.2037.

[9]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[10]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.

[11]

C. Y. KaoY. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[12]

C. Y. KaoY. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.

[13]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.

[14]

J. D. Murray, Mathematical Biology, Ⅱ, Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.

[15]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.

[17]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[18]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[19]

R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[20]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[21]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.

[22]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.

[23]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Diff. Eqns., 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.

[24]

J. W. SunF. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selectionmigration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.

[25]

J. W. SunW. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.

[26]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.

[27]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.

[28]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez memorial volume. Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[29]

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.  doi: 10.1006/jdeq.2001.4129.

[30]

W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.

[31]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.

[32]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal KermackMcKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.

[33]

F. Y. YangW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.

[34]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks, J. Differential Equations, 197 (2004), 162-196.  doi: 10.1016/S0022-0396(03)00170-0.

[35]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[2]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165.

[3]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.

[4]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model. Ⅰ. Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.

[5]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.

[6]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.

[7]

J. Garcĺa-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.

[8]

J. Garcĺa-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.  doi: 10.3934/cpaa.2009.8.2037.

[9]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[10]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.

[11]

C. Y. KaoY. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[12]

C. Y. KaoY. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.

[13]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.

[14]

J. D. Murray, Mathematical Biology, Ⅱ, Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.

[15]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.

[17]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[18]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[19]

R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[20]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[21]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.

[22]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.

[23]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Diff. Eqns., 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.

[24]

J. W. SunF. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selectionmigration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.

[25]

J. W. SunW. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.

[26]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.

[27]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.

[28]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez memorial volume. Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[29]

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.  doi: 10.1006/jdeq.2001.4129.

[30]

W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.

[31]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.

[32]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal KermackMcKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.

[33]

F. Y. YangW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.

[34]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks, J. Differential Equations, 197 (2004), 162-196.  doi: 10.1016/S0022-0396(03)00170-0.

[35]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.

[1]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[2]

Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3077-3100. doi: 10.3934/dcdsb.2021174

[3]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[4]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170

[5]

Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022062

[6]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[7]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[8]

Fei-Ying Yang, Yan Li, Wan-Tong Li, Zhi-Cheng Wang. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1969-1993. doi: 10.3934/dcdsb.2013.18.1969

[9]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[10]

Jia-Bing Wang, Shao-Xia Qiao, Chufen Wu. Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2635-2660. doi: 10.3934/dcdsb.2021152

[11]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[12]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[13]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[14]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[15]

Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015

[16]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[17]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[18]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[19]

Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[20]

Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (166)
  • HTML views (129)
  • Cited by (6)

Other articles
by authors

[Back to Top]