This paper is concerned with a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model with Dirichlet boundary condition, where the rates of disease transmission and recovery are assumed to be spatially heterogeneous. We introduce a basic reproduction number $R_0$ and establish threshold-type results on the global dynamic in terms of R0. More specifically, we show that if the basic reproduction number is less than one, then the disease will be extinct, and if the basic reproduction number is larger than one, then the disease will persist. Particularly, our results imply that the nonlocal dispersal of the infected individuals may suppress the spread of the disease even though in a high-risk domain.
Citation: |
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1.![]() ![]() ![]() |
[2] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010.
doi: 10.1090/surv/165.![]() ![]() ![]() |
[3] |
P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007.![]() ![]() ![]() |
[4] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. Ⅰ. Species persistence, J. Math. Biol., 51 (2005), 75-113.
doi: 10.1007/s00285-004-0313-3.![]() ![]() ![]() |
[5] |
J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003.![]() ![]() ![]() |
[6] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.![]() ![]() ![]() |
[7] |
J. Garcĺa-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.
doi: 10.1016/j.jde.2008.04.015.![]() ![]() ![]() |
[8] |
J. Garcĺa-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.
doi: 10.3934/cpaa.2009.8.2037.![]() ![]() ![]() |
[9] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1.![]() ![]() ![]() |
[10] |
W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.
doi: 10.3934/mbe.2010.7.51.![]() ![]() ![]() |
[11] |
C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551.![]() ![]() ![]() |
[12] |
C. Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.
doi: 10.3934/dcdsb.2012.17.2047.![]() ![]() ![]() |
[13] |
W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.
doi: 10.1016/j.nonrwa.2009.07.005.![]() ![]() ![]() |
[14] |
J. D. Murray, Mathematical Biology, Ⅱ, Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
![]() |
[15] |
S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y.![]() ![]() ![]() |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.
![]() |
[17] |
R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.
doi: 10.1016/j.na.2008.10.043.![]() ![]() ![]() |
[18] |
R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.
doi: 10.1016/j.jde.2009.05.002.![]() ![]() ![]() |
[19] |
R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451.![]() ![]() ![]() |
[20] |
R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.
doi: 10.1016/j.physd.2013.05.006.![]() ![]() ![]() |
[21] |
W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.
doi: 10.1016/j.jde.2010.04.012.![]() ![]() ![]() |
[22] |
W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.
doi: 10.1090/S0002-9939-2011-11011-6.![]() ![]() ![]() |
[23] |
N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Diff. Eqns., 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z.![]() ![]() ![]() |
[24] |
J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selectionmigration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.
doi: 10.1016/j.jde.2014.05.005.![]() ![]() ![]() |
[25] |
J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.
doi: 10.3934/dcds.2015.35.3217.![]() ![]() ![]() |
[26] |
Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020.![]() ![]() ![]() |
[27] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.![]() ![]() ![]() |
[28] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez memorial volume. Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.![]() ![]() ![]() |
[29] |
X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.
doi: 10.1006/jdeq.2001.4129.![]() ![]() ![]() |
[30] |
W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.![]() ![]() ![]() |
[31] |
W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.![]() ![]() ![]() |
[32] |
F. Y. Yang, Y. Li, W. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal KermackMcKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969.![]() ![]() ![]() |
[33] |
F. Y. Yang, W. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001.![]() ![]() ![]() |
[34] |
L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks, J. Differential Equations, 197 (2004), 162-196.
doi: 10.1016/S0022-0396(03)00170-0.![]() ![]() ![]() |
[35] |
G. B. Zhang, W. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007.![]() ![]() ![]() |