May  2017, 16(3): 799-822. doi: 10.3934/cpaa.2017038

W1, p-estimates for elliptic equations with lower order terms

Department of Mathematics, Sogang University Seoul, 121-742, Korea

* Corresponding author

Received  April 2016 Revised  December 2016 Published  February 2017

Fund Project: The authors were supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MOE) (No. 2013R1A1A2007290).

We consider the Neumann and Dirichlet problems for second-order linear elliptic equations
$ - {\rm{div}}{\mkern 1mu} (A\nabla u) - b \cdot \nabla u + \lambda u = f + {\rm{div}}{\mkern 1mu} F,\quad - {\rm{div}}{\mkern 1mu} ({A^t}\nabla v) + {\rm{div}}{\mkern 1mu} (vb) + \lambda v = g + {\rm{div}}{\mkern 1mu} G$
in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$, where $A: \mathbb{R}^n \to \mathbb{R}^{n^2}$, $b: \Omega \to \mathbb{R}^n$ and $\lambda \geq 0$ are given. Some $W^{1, 2}$-estimates have been already known, provided that $A \in L^\infty(\Omega)^{n^2}$ and $b \in L^r(\Omega)^n$, where $n \leq r < \infty$ if $n \geq 3$ and $2 < r < \infty$ if $n=2$. Under more regularity assumptions on $A$ and $\Omega$, we establish the existence and uniqueness of weak solutions satisfying $W^{1, p}$-estimates. Our $W^{1, p}$-estimates are uniform on $\lambda \geq 0$ for the case of the Dirichlet problems. For the Neumann problems, the $W^{1, p}$-estimates are uniform with respect to $\lambda \geq 0$ if $f$ and $g$ satisfy some compatibility conditions. These uniform estimates allow us to obtain strong stability results in $W^{1, p}$ with respect to $\lambda $ for the Neumann and Dirichlet problems.
Citation: Byungsoo Kang, Hyunseok Kim. W1, p-estimates for elliptic equations with lower order terms. Communications on Pure & Applied Analysis, 2017, 16 (3) : 799-822. doi: 10.3934/cpaa.2017038
References:
[1]

P. Auscher and M. Qafaoui, Observations on W1, p estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2002), 487-509.   Google Scholar

[2]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[3]

S. Byun, Elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc.,, 357 (2005), 1025-1046.  doi: 10.1090/S0002-9947-04-03624-4.  Google Scholar

[4]

S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. London Math. Soc., 90 (2005), 245-272.  doi: 10.1112/S0024611504014960.  Google Scholar

[5]

H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arich. Ration. Mech. Anal., 196 (2010), 25-70.  doi: 10.1007/s00205-009-0228-7.  Google Scholar

[6]

H. Dong and D. Kim, On the Lp-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arich. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.  Google Scholar

[7]

H. Dong and D. Kim, The conormal derivative problem for higher order elliptic systems with irregular coefficients, Recent Advances in Harmonic Analysis and Partial Differential Equations, 69–97, Contemp. Math. , 581, Amer. Math. Soc. , Providence, RI, 2012. Google Scholar

[8]

J. Droniou, Non-coercive linear elliptic problems, Potential Anal., 17 (2002), 181-203.  doi: 10.1023/A:1015709329011.  Google Scholar

[9]

J. Droniou and J. Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434.  doi: 10.1007/s00526-008-0189-y.  Google Scholar

[10]

E. FabesO. Mendez and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation fo the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[11]

J. Geng, W1, p estimate for elliptic problems with Neumann boundary conditions in Lipschitz domains, Adv. Math., 229 (2012), 2427-2448.  doi: 10.1016/j.aim.2012.01.004.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, 2001.  Google Scholar

[13]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[14]

H. Kim and Y. Kim, On weak solutions of elliptic equations with singular drifts, SIAM J. Math. Anal., 47 (2015), 1271-1290.  doi: 10.1137/14096270X.  Google Scholar

[15]

G. Moscariello, Existence and uniqueness for elliptic equations with lower-order terms, Adv. Calc. Var., 4 (2011), 421-444.  doi: 10.1515/ACV.2011.007.  Google Scholar

[16]

Z. Shen, Bounds of Riesz transform on Lp spaces for second order elliptic operators, Ann. Inst. Fourier(Grenoble), 55 (2005), 173–197.  Google Scholar

show all references

References:
[1]

P. Auscher and M. Qafaoui, Observations on W1, p estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2002), 487-509.   Google Scholar

[2]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[3]

S. Byun, Elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc.,, 357 (2005), 1025-1046.  doi: 10.1090/S0002-9947-04-03624-4.  Google Scholar

[4]

S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. London Math. Soc., 90 (2005), 245-272.  doi: 10.1112/S0024611504014960.  Google Scholar

[5]

H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arich. Ration. Mech. Anal., 196 (2010), 25-70.  doi: 10.1007/s00205-009-0228-7.  Google Scholar

[6]

H. Dong and D. Kim, On the Lp-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arich. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.  Google Scholar

[7]

H. Dong and D. Kim, The conormal derivative problem for higher order elliptic systems with irregular coefficients, Recent Advances in Harmonic Analysis and Partial Differential Equations, 69–97, Contemp. Math. , 581, Amer. Math. Soc. , Providence, RI, 2012. Google Scholar

[8]

J. Droniou, Non-coercive linear elliptic problems, Potential Anal., 17 (2002), 181-203.  doi: 10.1023/A:1015709329011.  Google Scholar

[9]

J. Droniou and J. Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434.  doi: 10.1007/s00526-008-0189-y.  Google Scholar

[10]

E. FabesO. Mendez and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation fo the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[11]

J. Geng, W1, p estimate for elliptic problems with Neumann boundary conditions in Lipschitz domains, Adv. Math., 229 (2012), 2427-2448.  doi: 10.1016/j.aim.2012.01.004.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, 2001.  Google Scholar

[13]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[14]

H. Kim and Y. Kim, On weak solutions of elliptic equations with singular drifts, SIAM J. Math. Anal., 47 (2015), 1271-1290.  doi: 10.1137/14096270X.  Google Scholar

[15]

G. Moscariello, Existence and uniqueness for elliptic equations with lower-order terms, Adv. Calc. Var., 4 (2011), 421-444.  doi: 10.1515/ACV.2011.007.  Google Scholar

[16]

Z. Shen, Bounds of Riesz transform on Lp spaces for second order elliptic operators, Ann. Inst. Fourier(Grenoble), 55 (2005), 173–197.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[19]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (184)
  • HTML views (127)
  • Cited by (3)

Other articles
by authors

[Back to Top]