May  2017, 16(3): 843-853. doi: 10.3934/cpaa.2017040

On nonexistence of solutions to some nonlinear parabolic inequalities

Moscow State Technological Institute "Stankin", Vadkovsky lane 3a, Moscow, 127055, Russia

Received  May 2016 Revised  December 2016 Published  February 2016

Fund Project: The author is supported by RFBR grant 14-01-00736. She also thanks the anonymous referee for her/his helpful comments.

We obtain sufficient conditions for nonexistence of positive solutions to some nonlinear parabolic inequalities with coefficients possessing singularities on unbounded sets.

Citation: Olga Salieva. On nonexistence of solutions to some nonlinear parabolic inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 843-853. doi: 10.3934/cpaa.2017040
References:
[1]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Un. Mat. Ital. B: Artic. Ric. Mat., 8 (1998), 223-262. 

[2]

E. Galakhov, Some nonexistence results for quasi-linear PDE's, Commun. Pure Appl. Anal., 6 (2007), 141-161.  doi: 10.3934/cpaa.2007.6.141.

[3]

E. Galakhov and O. Salieva, On blow-up of solutions to differential inequalities with singularities on unbounded sets, JMAA, 408 (2013), 102-113.  doi: 10.1016/j.jmaa.2013.05.069.

[4]

E. Galakhov and O. Salieva, Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets, Math. Notes, 98 (2015), 222-229.  doi: 10.4213/mzm10622.

[5]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proceedings of the Steklov Institute, 234 (2001), 1-383. 

[6]

S. I. Pohozaev, Essentially nonlinear capacities induced by differential operators, Dokl. RAN, 357 (1997), 592-594. 

[7]

G. M. Wei, Nonexistence of global solutions for evolutional p-Laplace inequalities with singular coefficients, J. Math. Anal. Appl., 28A (2007), 387-394. 

[8]

B. F. Zhong and X. Lijun, Nonexistence of global solutions for evolutional p-Laplace inequalities with singular coefficients, Journal of Inequalities and Applications, 62 (2014). 

show all references

References:
[1]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Un. Mat. Ital. B: Artic. Ric. Mat., 8 (1998), 223-262. 

[2]

E. Galakhov, Some nonexistence results for quasi-linear PDE's, Commun. Pure Appl. Anal., 6 (2007), 141-161.  doi: 10.3934/cpaa.2007.6.141.

[3]

E. Galakhov and O. Salieva, On blow-up of solutions to differential inequalities with singularities on unbounded sets, JMAA, 408 (2013), 102-113.  doi: 10.1016/j.jmaa.2013.05.069.

[4]

E. Galakhov and O. Salieva, Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets, Math. Notes, 98 (2015), 222-229.  doi: 10.4213/mzm10622.

[5]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proceedings of the Steklov Institute, 234 (2001), 1-383. 

[6]

S. I. Pohozaev, Essentially nonlinear capacities induced by differential operators, Dokl. RAN, 357 (1997), 592-594. 

[7]

G. M. Wei, Nonexistence of global solutions for evolutional p-Laplace inequalities with singular coefficients, J. Math. Anal. Appl., 28A (2007), 387-394. 

[8]

B. F. Zhong and X. Lijun, Nonexistence of global solutions for evolutional p-Laplace inequalities with singular coefficients, Journal of Inequalities and Applications, 62 (2014). 

[1]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[2]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[3]

Xiaohong Li, Fengquan Li. Nonexistence of solutions for nonlinear differential inequalities with gradient nonlinearities. Communications on Pure and Applied Analysis, 2012, 11 (3) : 935-943. doi: 10.3934/cpaa.2012.11.935

[4]

G. P. Trachanas, Nikolaos B. Zographopoulos. A strongly singular parabolic problem on an unbounded domain. Communications on Pure and Applied Analysis, 2014, 13 (2) : 789-809. doi: 10.3934/cpaa.2014.13.789

[5]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[6]

Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891

[7]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[8]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[9]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[10]

Qi S. Zhang. Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electronic Research Announcements, 1997, 3: 45-51.

[11]

Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1495-1511. doi: 10.3934/dcdss.2020084

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[13]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

[14]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[15]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[16]

Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439

[17]

Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 131-143. doi: 10.3934/dcdsb.2009.11.131

[18]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[19]

Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164

[20]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (171)
  • HTML views (123)
  • Cited by (1)

Other articles
by authors

[Back to Top]