May  2017, 16(3): 855-882. doi: 10.3934/cpaa.2017041

On weighted mixed-norm Sobolev estimates for some basic parabolic equations

1. 

School of Mathematics and Statistics, Wuhan University, 430072 Wuhan, China

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

3. 

Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, USA

* Corresponding author

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: The first author was supported by grants 11471251 and 11271293 from National Natural Science Foundation of China. The second and third authors were supported by grant MTM2015-66157-C2-1-P from Government of Spain.

Novel global weighted parabolic Sobolev estimates, weighted mixed-norm estimates and a.e. convergence results of singular integrals for evolution equations are obtained. Our results include the classical heat equation
$ \partial_tu=\Delta u+f, $
the harmonic oscillator evolution equation
$\partial_tu=\Delta u-|x|^2u+f, $
and their corresponding Cauchy problems. We also show weighted mixed-norm estimates for solutions to degenerate parabolic extension problems arising in connection with the fractional space-time nonlocal equations $(\partial_t-\Delta)^su=f$ and $(\partial_t-\Delta+|x|^2)^su=f$, for $0 < s < 1$.
Citation: Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041
References:
[1]

A. BernardisF. J. Martín-ReyesP. R. Stinga and J. L. Torrea, Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Differential Equations, 260 (2016), 6333-6362.  doi: 10.1016/j.jde.2015.12.042.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincarė Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.

[3]

A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85-139.  doi: 10.1007/BF02392130.

[4]

A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921.  doi: 10.2307/2372441.

[5]

J. Duoandikoetxea, Fourier Analysis, translated and revised from the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics 29, Amer. Math. Soc., Providence, RI, 2001.

[6]

E. B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math., 28 (1966), 81-131. 

[7]

E. B. Fabes and C. Sadosky, Pointwise convergence for parabolic singular integrals, Studia Math., 26 (1966), 225-232. 

[8]

J. E. GaléP. J. Miana and P. R. Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368.  doi: 10.1007/s00028-013-0182-6.

[9]

R. Haller-DintelmannH. Heck and M. Hieber, $L^p-L^q$ estimates for parabolic systems in non-divergence form with VMO coefficients, J. London Math. Soc., 74 (2006), 717-736. 

[10]

B. F.Jr Jones, A class of singular integrals, Amer. J. Math., 86 (1964), 441-462.  doi: 10.2307/2373175.

[11]

M. KemppainenP. Sjögren and J. L. Torrea, Wave extension problem for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 4905-4929.  doi: 10.3934/dcds.2015.35.4905.

[12]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics 12, American Mathematical Society, Providence, R.I., 1996. doi: 10.1090/gsm/012.

[13]

N. V. Krylov, The Calderón-Zygmund theorem and its applications to parabolic equations, (Russian) Algebra i Analiz, 13 (2001), 1-25; translation in St. Petersburg Math. J., 13 (2002), 509-526.

[14]

N. V. Krylov, The Calderón-Zygmund theorem and parabolic equations in $L_p(\mathbb{R}.C.^{2+\alpha})$-spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci, I (2002), 799-820. 

[15] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd., 1996.  doi: 10.1142/3302.
[16] N. N. Lebedev, Special Functions and Their Applications, Prentice-Hall, INC, Englewood Cliffs, N.J., 1965. 
[17]

R. A. MacíasC. Segovia and J. L. Torrea, Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type, Adv. Math., 93 (1992), 25-60.  doi: 10.1016/0001-8708(92)90024-F.

[18]

J.L. Rubio de FranciaF. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math., 62 (1986), 7-48.  doi: 10.1016/0001-8708(86)90086-1.

[19]

F. J. Ruiz and J. L. Torrea, Parabolic differential equations and vector-valued Fourier analysis, Colloq. Math., 58 (1989), 61-75. 

[20]

F. J. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math., 88 (1988), 221-243. 

[21] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory.Annals of Mathematics Studies 63,, Princeton University Press, Princeton, N.J., 1970. 
[22]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal., 202 (2003), 443-472.  doi: 10.1016/S0022-1236(03)00083-1.

[23]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

[24]

P. R. Stinga and J. L. Torrea, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation, preprint, arXiv: 1511.01945.

[25] S. Thangavelu, Lectures on Hermite and Laguerre expansions.Mathematical Notes 42,, Princeton University Press, Princeton, NJ, 1993. 

show all references

References:
[1]

A. BernardisF. J. Martín-ReyesP. R. Stinga and J. L. Torrea, Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Differential Equations, 260 (2016), 6333-6362.  doi: 10.1016/j.jde.2015.12.042.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincarė Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.

[3]

A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85-139.  doi: 10.1007/BF02392130.

[4]

A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921.  doi: 10.2307/2372441.

[5]

J. Duoandikoetxea, Fourier Analysis, translated and revised from the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics 29, Amer. Math. Soc., Providence, RI, 2001.

[6]

E. B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math., 28 (1966), 81-131. 

[7]

E. B. Fabes and C. Sadosky, Pointwise convergence for parabolic singular integrals, Studia Math., 26 (1966), 225-232. 

[8]

J. E. GaléP. J. Miana and P. R. Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368.  doi: 10.1007/s00028-013-0182-6.

[9]

R. Haller-DintelmannH. Heck and M. Hieber, $L^p-L^q$ estimates for parabolic systems in non-divergence form with VMO coefficients, J. London Math. Soc., 74 (2006), 717-736. 

[10]

B. F.Jr Jones, A class of singular integrals, Amer. J. Math., 86 (1964), 441-462.  doi: 10.2307/2373175.

[11]

M. KemppainenP. Sjögren and J. L. Torrea, Wave extension problem for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 4905-4929.  doi: 10.3934/dcds.2015.35.4905.

[12]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics 12, American Mathematical Society, Providence, R.I., 1996. doi: 10.1090/gsm/012.

[13]

N. V. Krylov, The Calderón-Zygmund theorem and its applications to parabolic equations, (Russian) Algebra i Analiz, 13 (2001), 1-25; translation in St. Petersburg Math. J., 13 (2002), 509-526.

[14]

N. V. Krylov, The Calderón-Zygmund theorem and parabolic equations in $L_p(\mathbb{R}.C.^{2+\alpha})$-spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci, I (2002), 799-820. 

[15] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd., 1996.  doi: 10.1142/3302.
[16] N. N. Lebedev, Special Functions and Their Applications, Prentice-Hall, INC, Englewood Cliffs, N.J., 1965. 
[17]

R. A. MacíasC. Segovia and J. L. Torrea, Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type, Adv. Math., 93 (1992), 25-60.  doi: 10.1016/0001-8708(92)90024-F.

[18]

J.L. Rubio de FranciaF. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math., 62 (1986), 7-48.  doi: 10.1016/0001-8708(86)90086-1.

[19]

F. J. Ruiz and J. L. Torrea, Parabolic differential equations and vector-valued Fourier analysis, Colloq. Math., 58 (1989), 61-75. 

[20]

F. J. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math., 88 (1988), 221-243. 

[21] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory.Annals of Mathematics Studies 63,, Princeton University Press, Princeton, N.J., 1970. 
[22]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal., 202 (2003), 443-472.  doi: 10.1016/S0022-1236(03)00083-1.

[23]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

[24]

P. R. Stinga and J. L. Torrea, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation, preprint, arXiv: 1511.01945.

[25] S. Thangavelu, Lectures on Hermite and Laguerre expansions.Mathematical Notes 42,, Princeton University Press, Princeton, NJ, 1993. 
[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[3]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[4]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[5]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[6]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[7]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[8]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[9]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[10]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[11]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[12]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[13]

Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[14]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[15]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[16]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[17]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[18]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[19]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[20]

Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic and Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (157)
  • HTML views (138)
  • Cited by (5)

Other articles
by authors

[Back to Top]