In this paper, we establish the $L^p$ estimates for the maximal functions associated with the multilinear pseudo-differential operators. Our main result is Theorem 1.2. There are several major different ingredients and extra difficulties in our proof from those in Grafakos, Honzík and Seeger [
Citation: |
[1] | Á. Bényi, D. Maldonado, V. Naibo and H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integr. Equ. oper. Theory, 67 (2010), 341-364. doi: 10.1007/s00020-010-1782-y. |
[2] | F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, 1 (2008), 1-27. doi: 10.2140/apde.2008.1.1. |
[3] | D. L. Burkholder, Distribution function inequalities for martingales, Ann. Prob., 1 (1973), 19-42. |
[4] | Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. Partial Differential Equations, 28 (2003), 1161-1181. doi: 10.1081/PDE-120021190. |
[5] | M. Christ, L. Grafakos, P. Honzík and A. Seeger, Maximal functions associated with multipliers of Mikhlin-Hörmander type, Math. Zeit., 249 (2005), 223-240. doi: 10.1007/s00209-004-0698-0. |
[6] | M. Christ and J. L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80. doi: 10.1007/BF02392554. |
[7] | J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98-112. doi: 10.1016/j.na.2014.01.005. |
[8] | R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331. |
[9] | R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels, Astérisque, 57 (1978). |
[10] | S. Y. A. Chang, M. Wilson and T. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., 60 (1985), 217-246. doi: 10.1007/BF02567411. |
[11] | J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI, (2001). |
[12] | W. Dai and G. Lu, Lp estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France, 143 (2015), 567-597. |
[13] | H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers, Ark. Mat., 23 (1985), 241-259. doi: 10.1007/BF02384428. |
[14] | C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115. doi: 10.2307/2373450. |
[15] | L. Grafakos, P. Honzík and A. Seeger, On maximal functions for Mikhlin-Hörmander multipliers, Adv. Math., 204 (2006), 363-378. doi: 10.1016/j.aim.2005.05.010. |
[16] | L. Grafakos and N. J. Kalton, The Marcinkiewicz multiplier condition for bilinear operators, Studia Math., 146 (2001), 115-156. doi: 10.4064/sm146-2-2. |
[17] | L. Grafakos and T. Tao, Multilinear interpolation between adjoint operators, J. Funct. Anal., 199 (2003), 379-385. doi: 10.1016/S0022-1236(02)00098-8. |
[18] | L. Grafakos and R. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164. doi: 10.1006/aima.2001.2028. |
[19] | Q. Hong and G. Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud., 14 (2014), 1055-1082. |
[20] | Q. Hong and L. Zhang, Lp estimates for bi-parameter and bilinear Fourier integral operators, Acta Mathematica Sinica -English Series, (2016). doi: 10.1007/s10114-016-6269-6. |
[21] | L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), 93-140. doi: 10.1007/BF02547187. |
[22] | P. Honzík, Maximal functions of multilinear multipliers, Math. Res. Lett., 16 (2009), 995-1006. doi: 10.4310/MRL.2009.v16.n6.a7. |
[23] | C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15. doi: 10.4310/MRL.1999.v6.n1.a1. |
[24] | G. Lu and L. Zhang, Lp estimates for a trilinear pseudo-differential operator with flag symbols, Indiana University Mathematics Journal, to appear. |
[25] | G. Lu and P. Zhang, Multilinear Calderón-Zygmund operators with kernels of Dinios type and applications, Nonlinear Anal., 107 (2014), 92-117. doi: 10.1016/j.na.2014.05.005. |
[26] | C. Muscalu, Unpublished notes Ⅰ, IAS Princeton, 2003. |
[27] | C. Muscalu, Paraproducts with flag singularities Ⅰ. A case study, Rev. Mat. Iberoam., 23 (2007), 705-742. doi: 10.4171/RMI/510. |
[28] | C. Muscalu, J. Pipher, T. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296. doi: 10.1007/BF02392566. |
[29] | C. Muscalu, J. Pipher, T. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam., 23 (2007), 705-742. doi: 10.4171/RMI/480. |
[30] | C. Muscalu and W. Schlag, Classical and multilinear Harmonic Analysis, Ⅱ, Cambridge Studies in Advanced Mathematics, vol. 138, Cambridge University Press, Cambridge, 2013. |
[31] | C. Muscalu, T. Tao and C. Thiele, Multilinear operators given by singular multipliers, J. Amer. Math. Soc., 15 (2002), 469-496. |
[32] | C. Muscalu, T. Tao and C. Thiele, Lp estimates for the biest Ⅱ, The Fourier case, Math. Ann., 329 (2004), 427-461. doi: 10.1007/s00208-003-0508-8. |
[33] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Priceton Univ. Press, Princeton, NJ, 1970. |