May  2017, 16(3): 953-972. doi: 10.3934/cpaa.2017046

Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials

1. 

Institut Elie Cartan de Lorraine and CNRS, UMR 7502, Université de Lorraine, Metz, 57045, France

2. 

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj, 400084, Romania

3. 

Department of Mathematics, University of Pécs, Pécs, 7624, Hungary

* Corresponding author

Received  August 2016 Revised  December 2016 Published  February 2017

Motivated by relevant physical applications, we study Schrödinger equations with state-dependent potentials. Existence, localization and multiplicity results are established for positive standing wave solutions in the case of oscillating potentials. To this aim, a localized Pucci-Serrin type critical point theorem is first obtained. Two examples are then given to illustrate the new theory.

Citation: Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure & Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046
References:
[1]

N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams, Chapman and Hall, London, 1997.Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511618260. Google Scholar

[3]

A. AmbrosettiA. Malchiodi and S. Secchi, Multiplicity results for some nonlinear singularly perturbed elliptic problems on Rn, Arch. Rat. Mech. Anal., 159 (2001), 253-271. doi: 10.1007/s002050100152. Google Scholar

[4]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds. and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y. Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer, Cham, 2014. doi: 10.1007/978-3-319-06914-2. Google Scholar

[6]

P. Böhi, Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip, Nature Physics, 5 (2009), 592-597. Google Scholar

[7]

G. Bonanno and G. Molica Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl, 382 (2011), 1-8. doi: 10.1016/j.jmaa.2011.04.026. Google Scholar

[8]

G. Bonanno and G. Molica Bisci, O'Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Model, 52 (2010), 152-160. doi: 10.1016/j.mcm.2010.02.004. Google Scholar

[9]

J. Bourgain, Global Solutions of Nonlinear Schrodinger Equations, AMS, 1999. doi: 10.1090/coll/046. Google Scholar

[10]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3. Google Scholar

[11]

J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials, Ann. I. H. Poincar′e -AN, 26 (2009), 943-958. doi: 10.1016/j.anihpc.2008.03.009. Google Scholar

[12]

R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific, Singapore, 2008. doi: 10.1142/9789812793133. Google Scholar

[13]

T. Cazenave, Semilinear Schrödinger Equations, Amer. Math. Soc., CIMS 10, 2003. doi: 10.1090/cln/010. Google Scholar

[14]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32. doi: 10.1007/s002080200327. Google Scholar

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl, 47 (1974), 443-474. doi: 10.1016/0022-247X(74)90025-0. Google Scholar

[16]

M. Garcia-HuidobroR. Manasevich and K. Schmitt, Positive radial solutions of quasilinear elliptic partial differential equations on a ball, Nonlinear Anal., 35 (1999), 175-190. doi: 10.1016/S0362-546X(97)00613-5. Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[18]

D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value problems, in Progress in Nonlinear Differential equations and Their Applications (J. Escher and G. Simonett eds. ), Birkhäuser, (1999), 349-361. Google Scholar

[19]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. Google Scholar

[20]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511760631. Google Scholar

[21]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Commun. Math. Phys., 131 (1990), 223-253. Google Scholar

[22]

P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations, 21 (1996), 721-733. doi: 10.1080/03605309608821205. Google Scholar

[23]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003. Google Scholar

[24]

R. Precup, On a bounded critical point theorem of Schechter, Studia Univ. Babeş-Bolyai Math., 58 (2013), 87-95. Google Scholar

[25]

R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal., 75 (2012), 834-851. doi: 10.1016/j.na.2011.09.016. Google Scholar

[26]

R. Precup, Critical point localization theorems via Ekeland's variational principle, Dynam. Systems Appl., 22 (2013), 355-370. Google Scholar

[27]

R. Precup, P. Pucci and C. Varga, A three critical points result in a bounded domain of a Banach space and applications, Differential Integral Equations, to appear.Google Scholar

[28]

P. Pucci and J. Serrin, Extensions of mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. doi: 10.1016/0022-1236(84)90072-7. Google Scholar

[29]

P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. doi: 10.1016/0022-0396(85)90125-1. Google Scholar

[30]

P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007. Google Scholar

[31]

B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226. doi: 10.1007/s000130050496. Google Scholar

[32]

B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157. doi: 10.1016/j.na.2009.02.074. Google Scholar

[33]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc., 331 (1992), 681-703. doi: 10.2307/2154135. Google Scholar

[34]

M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999. doi: 10.1007/978-1-4612-1596-7. Google Scholar

[35]

M. Struwe, Variational Methods, Springer, Berlin, 1990. doi: 10.1007/978-3-662-02624-3. Google Scholar

[36]

C. Sulem and P. -L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999. Google Scholar

[37] M. E. Taylor, Partial Differential Equations, Vols. Ⅰ-Ⅲ, Springer, New York, 1996. doi: 10.1007/978-1-4684-9320-7.
[38]

R. Tian and Z.-Q Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. Google Scholar

show all references

References:
[1]

N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams, Chapman and Hall, London, 1997.Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511618260. Google Scholar

[3]

A. AmbrosettiA. Malchiodi and S. Secchi, Multiplicity results for some nonlinear singularly perturbed elliptic problems on Rn, Arch. Rat. Mech. Anal., 159 (2001), 253-271. doi: 10.1007/s002050100152. Google Scholar

[4]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds. and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y. Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer, Cham, 2014. doi: 10.1007/978-3-319-06914-2. Google Scholar

[6]

P. Böhi, Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip, Nature Physics, 5 (2009), 592-597. Google Scholar

[7]

G. Bonanno and G. Molica Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl, 382 (2011), 1-8. doi: 10.1016/j.jmaa.2011.04.026. Google Scholar

[8]

G. Bonanno and G. Molica Bisci, O'Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Model, 52 (2010), 152-160. doi: 10.1016/j.mcm.2010.02.004. Google Scholar

[9]

J. Bourgain, Global Solutions of Nonlinear Schrodinger Equations, AMS, 1999. doi: 10.1090/coll/046. Google Scholar

[10]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3. Google Scholar

[11]

J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials, Ann. I. H. Poincar′e -AN, 26 (2009), 943-958. doi: 10.1016/j.anihpc.2008.03.009. Google Scholar

[12]

R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific, Singapore, 2008. doi: 10.1142/9789812793133. Google Scholar

[13]

T. Cazenave, Semilinear Schrödinger Equations, Amer. Math. Soc., CIMS 10, 2003. doi: 10.1090/cln/010. Google Scholar

[14]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32. doi: 10.1007/s002080200327. Google Scholar

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl, 47 (1974), 443-474. doi: 10.1016/0022-247X(74)90025-0. Google Scholar

[16]

M. Garcia-HuidobroR. Manasevich and K. Schmitt, Positive radial solutions of quasilinear elliptic partial differential equations on a ball, Nonlinear Anal., 35 (1999), 175-190. doi: 10.1016/S0362-546X(97)00613-5. Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[18]

D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value problems, in Progress in Nonlinear Differential equations and Their Applications (J. Escher and G. Simonett eds. ), Birkhäuser, (1999), 349-361. Google Scholar

[19]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. Google Scholar

[20]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511760631. Google Scholar

[21]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Commun. Math. Phys., 131 (1990), 223-253. Google Scholar

[22]

P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations, 21 (1996), 721-733. doi: 10.1080/03605309608821205. Google Scholar

[23]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003. Google Scholar

[24]

R. Precup, On a bounded critical point theorem of Schechter, Studia Univ. Babeş-Bolyai Math., 58 (2013), 87-95. Google Scholar

[25]

R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal., 75 (2012), 834-851. doi: 10.1016/j.na.2011.09.016. Google Scholar

[26]

R. Precup, Critical point localization theorems via Ekeland's variational principle, Dynam. Systems Appl., 22 (2013), 355-370. Google Scholar

[27]

R. Precup, P. Pucci and C. Varga, A three critical points result in a bounded domain of a Banach space and applications, Differential Integral Equations, to appear.Google Scholar

[28]

P. Pucci and J. Serrin, Extensions of mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. doi: 10.1016/0022-1236(84)90072-7. Google Scholar

[29]

P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. doi: 10.1016/0022-0396(85)90125-1. Google Scholar

[30]

P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007. Google Scholar

[31]

B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226. doi: 10.1007/s000130050496. Google Scholar

[32]

B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157. doi: 10.1016/j.na.2009.02.074. Google Scholar

[33]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc., 331 (1992), 681-703. doi: 10.2307/2154135. Google Scholar

[34]

M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999. doi: 10.1007/978-1-4612-1596-7. Google Scholar

[35]

M. Struwe, Variational Methods, Springer, Berlin, 1990. doi: 10.1007/978-3-662-02624-3. Google Scholar

[36]

C. Sulem and P. -L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999. Google Scholar

[37] M. E. Taylor, Partial Differential Equations, Vols. Ⅰ-Ⅲ, Springer, New York, 1996. doi: 10.1007/978-1-4684-9320-7.
[38]

R. Tian and Z.-Q Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[2]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[3]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[4]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[7]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[8]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[9]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[10]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[11]

Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825

[12]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[13]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[14]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[15]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[16]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[17]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[18]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[19]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[20]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]