Improved Trudinger-Moser-Adams type inequalities in the spirit of Lions were recently studied in [
Citation: |
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in ℝN and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057.
doi: 10.1090/S0002-9939-99-05180-1.![]() ![]() ![]() |
[2] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128 (1988), 385-398.
doi: 10.2307/1971445.![]() ![]() ![]() |
[3] |
Adimurthi and K. Sandeep, A singular Trudinger-Moser embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9.![]() ![]() ![]() |
[4] |
Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trundinger-Moser inequality in ℝN and its applications, Int. Math. Res. Not. IMRN, 13 (2010), 2394-2426.
![]() ![]() |
[5] |
L. Carleson and S. Y. A. Chang, On the existence of an extremal function for an inequality of Moser J., Bull. Sci. Math., 110 (1986), 113-127.
![]() ![]() |
[6] |
D. Cassani, F. Sani and C. Tarsi, Equivalent Moser type inequalities in R2 and the zero mass case, J. Funct. Anal., 267 (2014), 4236-4263.
doi: 10.1016/j.jfa.2014.09.022.![]() ![]() ![]() |
[7] |
G. Csató and P. Roy, Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions, Calc. Var. Partial Differential Equations, 54 (2015), 2341-2366.
doi: 10.1007/s00526-015-0867-5.![]() ![]() ![]() |
[8] |
G. Csató and P. Roy, Singular Moser-Trudinger inequality on simply connected domains, Comm. Partial Differential Equations, 41 (2016), 838-847.
doi: 10.1080/03605302.2015.1123276.![]() ![]() ![]() |
[9] |
J. M. do Ó, N-Laplacian equations in ℝN with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419.![]() ![]() ![]() |
[10] |
M. Dong, N. Lam and G. Lu, Singular Trudinger-Moser inequalities, Caffarelli-KohnNirenberg inequalities and their extremal functions, preprint.
![]() |
[11] |
M. Dong and G. Lu, Best constants and existence of maximizers for weighted Moser-Trudinger inequalities, Calc. Var. Partial Differential Equations, 55 (2016), 55-88.
doi: 10.1007/s00526-016-1014-7.![]() ![]() ![]() |
[12] |
M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497.
doi: 10.1007/BF02566514.![]() ![]() ![]() |
[13] |
L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68 (1993), 415-454.
doi: 10.1007/BF02565828.![]() ![]() ![]() |
[14] |
L. Fontana and C. Morpurgo, Sharp Adams and Moser-Trudinger inequalities on ℝN and other spaces of infinite measure, preprint, arXiv: 1504.04678.
![]() |
[15] |
M. Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in ℝN, Math. Ann., 351 (2011), 781-804.
doi: 10.1007/s00208-010-0618-z.![]() ![]() ![]() |
[16] |
M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted TrudingerMoser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 297-314.
doi: 10.1016/j.anihpc.2013.03.004.![]() ![]() ![]() |
[17] |
N. Lam, Maximizers for the singular Trudinger-Moser inequalities in the subcritical cases, Proc. Amer. Math. Soc. , to appear.
![]() |
[18] |
N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and application, Adv. Math., 231 (2012), 3259-3287.
doi: 10.1016/j.aim.2012.09.004.![]() ![]() ![]() |
[19] |
N. Lam and G. Lu, Sharp singular Adams inequalities in high order Sobolev spaces, Methods Appl. Anal., 19 (2012), 243-266.
doi: 10.4310/MAA.2012.v19.n3.a2.![]() ![]() ![]() |
[20] |
N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differential Equations, 255 (2013), 298-325.
doi: 10.1016/j.jde.2013.04.005.![]() ![]() ![]() |
[21] |
N. Lam, G. Lu and H. Tang, Sharp affine and improved Moser-Trudinger-Adams type inequalities on unbounded domains in the spirit of Lions, J. Geom. Anal., (2016).
doi: 10.1007/s12220-016-9682-2.![]() ![]() ![]() |
[22] |
N. Lam, G. Lu and L. Zhang, Equivalence of critical and subcritical sharp Trudinger-MoserAdams inequalities, Rev. Mat. Iberoam., to appear, arXiv: 1504.04858.
![]() |
[23] |
N. Lam, G. Lu and L. Zhang, Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities, preprint.
![]() |
[24] |
Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A, 48 (2005), 618-648.
doi: 10.1360/04ys0050.![]() ![]() ![]() |
[25] |
Y. Li and C. B. Ndiaye, Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds, J. Geom. Anal., 17 (2007), 669-699.
doi: 10.1007/BF02937433.![]() ![]() ![]() |
[26] |
Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in ℝn, Indiana Univ. Math. J., 57 (2008), 451-480.
doi: 10.1512/iumj.2008.57.3137.![]() ![]() ![]() |
[27] |
K. C. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671.
doi: 10.1090/S0002-9947-96-01541-3.![]() ![]() ![]() |
[28] |
G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170.
doi: 10.1016/j.aim.2008.10.011.![]() ![]() ![]() |
[29] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
[30] |
S. I. Pohožaev, On the eigenfunctions of the equation Δu +λf(u) = 0, (Russian) Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.
![]() ![]() |
[31] |
B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in ℝ2, J. Funct. Anal., 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013.![]() ![]() ![]() |
[32] |
B. Ruf and F. Sani, Sharp Adams-type inequalities in ℝn, Trans. Amer. Math. Soc., 365 (2013), 645-670.
doi: 10.1090/S0002-9947-2012-05561-9.![]() ![]() ![]() |
[33] |
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N. J. 1970 xiv+290 pp.
![]() ![]() |
[34] |
C. Tarsi, Adams' inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal., 37 (2012), 353-385.
doi: 10.1007/s11118-011-9259-4.![]() ![]() ![]() |
[35] |
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
![]() ![]() |
[36] |
V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations, (Russian) Dokl. Akad. Nauk SSSR, 138 (1961), 805-808.
![]() ![]() |