May  2017, 16(3): 999-1012. doi: 10.3934/cpaa.2017048

Positive ground state solutions of a quadratically coupled schrödinger system

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China

* Corresponding author

Received  October 2016 Revised  December 2016 Published  February 2017

Fund Project: This work is supported by National Natural Science Foundation of China (Grant Nos. 11571209, 11671239).

In this paper, we study the following quadratically coupled Schrödinger system:
$\begin{equation*}\left\{\begin{array}{ll}-\Delta u+\lambda_1u=\mu_1u^2+2\alpha uv+\gamma v^2, & \mbox{in }\Omega,\\-\Delta v+\lambda_2v=\mu_2v^2+2\gamma uv+\alpha u^2, & \mbox{in }\Omega,\\u=v=0, & \mbox{on }\partial\Omega,\end{array}\right.\end{equation*}$
where $\Omega\subset\mathbb{R}^6$ is a smooth bounded domain, $-\lambda (\Omega) < \lambda_1, \lambda_2 < 0, \mu_1, \mu_2, \alpha, \gamma>0$, and $\lambda (\Omega)$ is the first eigenvalue of $-\Delta$ with the Dirichlet boundary condition. The main difficulty to investigate this kind of equations is caused by the fact that all the quadratic nonlinearities, including the coupling terms, are of critical growth. By the methods used in [Zhenyu Guo, Positive ground state solutions of a nonlinearly coupled Schrödinger system with critical exponents in [Zhenyu Guo, Positive ground state solutions of a nonlinearly coupled Schrödinger system with critical exponents in $\mathbb{R}^4$, J. Math. Anal. Appl., 430(2):950-970, 2015], the existence of positive ground state solutions of the system is established with more ingenious hypotheses.
Citation: Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048
References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.

[2]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.

[3]

T. BartschZ.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.

[5]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412.  doi: 10.1016/0375-9601(94)00989-3.

[7]

Z. Chen and W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262 (2012), 3091-3107.  doi: 10.1016/j.jfa.2012.01.001.

[8]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.

[9]

Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations, 48 (2013), 695-711.  doi: 10.1007/s00526-012-0568-2.

[10]

Z. Chen and W. Zou, Standing waves for linearly coupled Schrödinger equations with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 429-447.  doi: 10.1016/j.anihpc.2013.04.003.

[11]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. doi: 10.1007/978-3-642-61798-0.

[13]

Z. Guo, Positive ground state solutions for a nonlinearly coupled Schrödinger system with critical exponents in ℝ4, J. Math. Anal. Appl., 430 (2015), 950-970.  doi: 10.1016/j.jmaa.2015.05.037.

[14]

C. T.-Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in ℝn. n ≤ 3, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.

[16]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications. 24, Birkhäuser Boston, Inc., Boston, MA, (1996).  doi: 10.1007/978-1-4612-4146-1.

[17]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to secondharmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52.  doi: 10.1007/s003329900063.

[18]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.

[19]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691.  doi: 10.1007/s00526-015-0879-1.

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.

[2]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.

[3]

T. BartschZ.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.

[5]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412.  doi: 10.1016/0375-9601(94)00989-3.

[7]

Z. Chen and W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262 (2012), 3091-3107.  doi: 10.1016/j.jfa.2012.01.001.

[8]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.

[9]

Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations, 48 (2013), 695-711.  doi: 10.1007/s00526-012-0568-2.

[10]

Z. Chen and W. Zou, Standing waves for linearly coupled Schrödinger equations with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 429-447.  doi: 10.1016/j.anihpc.2013.04.003.

[11]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. doi: 10.1007/978-3-642-61798-0.

[13]

Z. Guo, Positive ground state solutions for a nonlinearly coupled Schrödinger system with critical exponents in ℝ4, J. Math. Anal. Appl., 430 (2015), 950-970.  doi: 10.1016/j.jmaa.2015.05.037.

[14]

C. T.-Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in ℝn. n ≤ 3, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.

[16]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications. 24, Birkhäuser Boston, Inc., Boston, MA, (1996).  doi: 10.1007/978-1-4612-4146-1.

[17]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to secondharmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52.  doi: 10.1007/s003329900063.

[18]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.

[19]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691.  doi: 10.1007/s00526-015-0879-1.

[1]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[2]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[3]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[4]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[5]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[6]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[7]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[8]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[9]

Mohammad Ali Husaini, Chuangye Liu. Synchronized and ground-state solutions to a coupled Schrödinger system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 639-667. doi: 10.3934/cpaa.2021192

[10]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[11]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[12]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[13]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[14]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[15]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[16]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[17]

Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112

[18]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure and Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[19]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[20]

Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (95)
  • HTML views (110)
  • Cited by (1)

Other articles
by authors

[Back to Top]