May  2017, 16(3): 999-1012. doi: 10.3934/cpaa.2017048

Positive ground state solutions of a quadratically coupled schrödinger system

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China

* Corresponding author

Received  October 2016 Revised  December 2016 Published  February 2017

Fund Project: This work is supported by National Natural Science Foundation of China (Grant Nos. 11571209, 11671239).

In this paper, we study the following quadratically coupled Schrödinger system:
$\begin{equation*}\left\{\begin{array}{ll}-\Delta u+\lambda_1u=\mu_1u^2+2\alpha uv+\gamma v^2, & \mbox{in }\Omega,\\-\Delta v+\lambda_2v=\mu_2v^2+2\gamma uv+\alpha u^2, & \mbox{in }\Omega,\\u=v=0, & \mbox{on }\partial\Omega,\end{array}\right.\end{equation*}$
where $\Omega\subset\mathbb{R}^6$ is a smooth bounded domain, $-\lambda (\Omega) < \lambda_1, \lambda_2 < 0, \mu_1, \mu_2, \alpha, \gamma>0$, and $\lambda (\Omega)$ is the first eigenvalue of $-\Delta$ with the Dirichlet boundary condition. The main difficulty to investigate this kind of equations is caused by the fact that all the quadratic nonlinearities, including the coupling terms, are of critical growth. By the methods used in [Zhenyu Guo, Positive ground state solutions of a nonlinearly coupled Schrödinger system with critical exponents in [Zhenyu Guo, Positive ground state solutions of a nonlinearly coupled Schrödinger system with critical exponents in $\mathbb{R}^4$, J. Math. Anal. Appl., 430(2):950-970, 2015], the existence of positive ground state solutions of the system is established with more ingenious hypotheses.
Citation: Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048
References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[2]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[3]

T. BartschZ.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.  Google Scholar

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412.  doi: 10.1016/0375-9601(94)00989-3.  Google Scholar

[7]

Z. Chen and W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262 (2012), 3091-3107.  doi: 10.1016/j.jfa.2012.01.001.  Google Scholar

[8]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[9]

Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations, 48 (2013), 695-711.  doi: 10.1007/s00526-012-0568-2.  Google Scholar

[10]

Z. Chen and W. Zou, Standing waves for linearly coupled Schrödinger equations with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 429-447.  doi: 10.1016/j.anihpc.2013.04.003.  Google Scholar

[11]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

Z. Guo, Positive ground state solutions for a nonlinearly coupled Schrödinger system with critical exponents in ℝ4, J. Math. Anal. Appl., 430 (2015), 950-970.  doi: 10.1016/j.jmaa.2015.05.037.  Google Scholar

[14]

C. T.-Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in ℝn. n ≤ 3, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

[16]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications. 24, Birkhäuser Boston, Inc., Boston, MA, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[17]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to secondharmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52.  doi: 10.1007/s003329900063.  Google Scholar

[18]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.  Google Scholar

[19]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691.  doi: 10.1007/s00526-015-0879-1.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[2]

T. BartschN. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[3]

T. BartschZ.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.  Google Scholar

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412.  doi: 10.1016/0375-9601(94)00989-3.  Google Scholar

[7]

Z. Chen and W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262 (2012), 3091-3107.  doi: 10.1016/j.jfa.2012.01.001.  Google Scholar

[8]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[9]

Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations, 48 (2013), 695-711.  doi: 10.1007/s00526-012-0568-2.  Google Scholar

[10]

Z. Chen and W. Zou, Standing waves for linearly coupled Schrödinger equations with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 429-447.  doi: 10.1016/j.anihpc.2013.04.003.  Google Scholar

[11]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

Z. Guo, Positive ground state solutions for a nonlinearly coupled Schrödinger system with critical exponents in ℝ4, J. Math. Anal. Appl., 430 (2015), 950-970.  doi: 10.1016/j.jmaa.2015.05.037.  Google Scholar

[14]

C. T.-Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in ℝn. n ≤ 3, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

[16]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications. 24, Birkhäuser Boston, Inc., Boston, MA, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[17]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to secondharmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52.  doi: 10.1007/s003329900063.  Google Scholar

[18]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.  Google Scholar

[19]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691.  doi: 10.1007/s00526-015-0879-1.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[20]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (37)
  • HTML views (108)
  • Cited by (1)

Other articles
by authors

[Back to Top]