[1]
|
J. Bedrossian, N. Rodr$\acute{i}$guez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.
doi: 10.1088/0951-7715/24/6/001.
|
[2]
|
D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Mod l. Math. Anal. Numr., 31 (1997), 615-642.
|
[3]
|
A. L. Bertozzi and J. Brandman, Finite-time blow-up of L∞-weak solutions of an aggregation equation, Comm. Math. Sci., 8 (2010), 45-65.
|
[4]
|
A. L. Bertozzi, J. B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations, SIAM J. Math. Anal., 44 (2012), 651-681.
doi: 10.1137/11081986X.
|
[5]
|
A. L. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation in Rn, Comm. Math. Phys., 274 (2007), 717-735.
doi: 10.1007/s00220-007-0288-1.
|
[6]
|
A. L. Bertozzi and T. Laurent, The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels, Chin. Ann. Math. Ser. B, 30 (2009), 463-482.
doi: 10.1007/s11401-009-0191-5.
|
[7]
|
S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent m ≥ 0, Comm. Math. Phys., 323 (2013), 1017-1070.
doi: 10.1007/s00220-013-1777-z.
|
[8]
|
P. Biler, Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.
|
[9]
|
P. Biler, M. Cannone, I. A. Guerra and G. Karch, Global regular and singular solutions for a model of gravitating particles, Math. Ann., 330 (2004), 693-708.
doi: 10.1007/s00208-004-0565-7.
|
[10]
|
A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var., 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7.
|
[11]
|
M. Bodnar and J. J. L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380.
doi: 10.1016/j.jde.2005.07.025.
|
[12]
|
M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal.: Real World Appl., 8 (2007), 939-958.
doi: 10.1016/j.nonrwa.2006.04.002.
|
[13]
|
J. A. Carrillo, L. Chen, J.-G. Liu and J. Wang, A note on the subcritical two dimensional Keller-Segel system, Acta Appl. Math., 119 (2012), 43-55.
doi: 10.1007/s10440-011-9660-4.
|
[14]
|
J. A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent and D. Slepcev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.
doi: 10.1215/00127094-2010-211.
|
[15]
|
J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003), 971-1018.
doi: 10.4171/RMI/376.
|
[16]
|
L. Chen, J.-G. Liu and J. H. Wang, Multidimensional degenerate Keller-Segel system with critical diffusion exponent 2n=(n +2), SIAM J. Math. Anal., 44 (2012), 1077-1102.
doi: 10.1137/110839102.
|
[17]
|
L. Chen and J. H. Wang, Exact criterion for global existence and blow up to a degenerate Keller-Segel system, Doc. Math., 19 (2014), 103-120.
|
[18]
|
S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath., 55 (1984), 61-68.
doi: 10.1007/978-3-642-45589-6_6.
|
[19]
|
T. Cieślak and P. Laurencot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchwski-Poisson system, C. R. Acad. Sci. Paris Ser. Ⅰ, 347 (2009), 237-242.
doi: 10.1016/j.crma.2009.01.016.
|
[20]
|
R. DiPerna and A. Majda, Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 40 (1987), 301-345.
doi: 10.1002/cpa.3160400304.
|
[21]
|
J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in ℝ2, C. R. Acad. Sci. Paris, Ser. Ⅰ, 339 (2004), 611-616.
doi: 10.1016/j.crma.2004.08.011.
|
[22]
|
H. Dong, The aggregation equation with power-law kernels: Ill-posedness, mass concentration and similarity solutions, Comm. Math. Phys., 304 (2011), 649-664.
doi: 10.1007/s00220-011-1237-6.
|
[23]
|
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3.
|
[24]
|
D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresberichte der DMV, 105 (2003), 103-165.
|
[25]
|
D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences Ⅱ, Jahresberichte der DMV, 106 (2004), 51-69.
|
[26]
|
D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model, J. Math. Biol., 44 (2002), 463-478.
doi: 10.1007/s002850100134.
|
[27]
|
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.
|
[28]
|
D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145-175.
doi: 10.1007/s00205-010-0320-z.
|
[29]
|
S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate KellerSegel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.
doi: 10.1016/j.jde.2011.02.012.
|
[30]
|
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.2307/2153966.
|
[31]
|
F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics, Nonlinear Diff. Eq. Appl. NoDEA, 20 (2013), 101-127.
doi: 10.1007/s00030-012-0155-4.
|
[32]
|
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
|
[33]
|
E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.
|
[34]
|
R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.
doi: 10.1016/j.jmaa.2008.01.005.
|
[35]
|
T. Laurent, Local and global existence for an aggregation equation, Comm. Partial Differential Equations, 32 (2007), 1941-1964.
doi: 10.1080/03605300701318955.
|
[36]
|
S. Luckhaus and Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems, M2AN Math. Model. Numer. Anal., 40 (2006), 597-621.
doi: 10.1051/m2an:2006025.
|
[37]
|
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Vol. 27, Cambridge University Press, 2002.
|
[38]
|
C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys., 84 (1982), 483-503.
|
[39]
|
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
|
[40]
|
T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Nonlinear Anal., 47 (2001), 777-787.
doi: 10.1016/S0362-546X(01)00222-X.
|
[41]
|
T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Nonlinear Anal. Theory Methods Appl., 30 (1997), 3837-3842.
doi: 10.1016/S0362-546X(96)00256-8.
|
[42]
|
T. Nagai and T. Senba, Global existence and blow-up of radial solutioins to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
|
[43]
|
NASA NPARC Alliance Verification and Validation, Examining Spatial (Grid) Convergence, http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html.
|
[44]
|
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-470.
|
[45]
|
C. S. Patlak, Random walk with persistenc and external bias, Bull. Math. Biol. Biophys., 15 (1953), 311-338.
|
[46]
|
P. J. Roache, Verification and validation in computational science and engineering, Computing in Science Eng., 1 (1998), 8-9.
|
[47]
|
F. Rousset, Characteristic boundary layers in real vanishing viscosity limits, J. Differential Equations, 210 (2005), 25-64.
doi: 10.1016/j.jde.2004.10.004.
|
[48]
|
F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems, Trans. Amer. Math. Soc., 355 (2003), 2991-3008.
doi: 10.1090/S0002-9947-03-03279-3.
|
[49]
|
M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the NavierStokes equation on a half-space. Ⅰ.Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433-461.
doi: 10.1007/s002200050304.
|
[50]
|
T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis, Abstr. Appl. Anal. , V (2006), Article ID 23061, 1-21.
doi: 10.1155/AAA/2006/23061.
|
[51]
|
D. Serre and K. Zumbrun, Boundary layer stability in real vanishing viscosity limit, Comm. Math. Phys., 221 (2001), 267-292.
doi: 10.1007/s002200100486.
|
[52]
|
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Equa., 19 (2006), 841-876.
|
[53]
|
Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate KellerSegel models, Adv. Diff. Eqns., 12 (2007), 121-144.
|
[54]
|
Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.
doi: 10.1016/j.jde.2006.03.003.
|
[55]
|
C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6.
|
[56]
|
G. Toscani, One-dimensional kinetic models of granular flows, ESAIM Math. Model. Numer. Anal., 34 (2000), 1277-1291.
doi: 10.1051/m2an:2000127.
|
[57]
|
J. Wang, L. Chen and L. Hong, Parabolic elliptic type Keller-Segel system on the whole space case, Discrete Contin. Dyn. Syst. , accepted.
doi: 10.3934/dcds.2016.36.1061.
|
[58]
|
J. Wang, Boundary layers for compressible Navier-Stokes equations with outflow boundary condition, J. Differential Equations, 248 (2010), 1143-1174.
doi: 10.1016/j.jde.2009.12.001.
|
[59]
|
J. Wang and L. Tong, Stability of boundary layers for the inflow compressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2595-2613.
doi: 10.3934/dcdsb.2012.17.2595.
|
[60]
|
J. Wang and F. Xie, Characteristic boundary layers for parabolic perturbations of quasilinear hyperbolic problems, Nonlinear Anal., 73 (2010), 2504-2523.
doi: 10.1016/j.na.2010.06.022.
|
[61]
|
J. Wang and F. Xie, Zero dissipation limit and stability of boundary layers for the heat conductive boussinesq equations in a bounded domain, Proc. Roy. Soc. Edinburgh Sect. A, accepted.
doi: 10.1017/S0308210513000875.
|
[62]
|
Z. P. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane, Comm. Pure Appl. Math., 52 (1999), 479-541.
doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.3.CO;2-T.
|