May  2017, 16(3): 1037-1058. doi: 10.3934/cpaa.2017050

Global existence of solutions to an attraction-repulsion chemotaxis model with growth

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA

Received  June 2016 Revised  November 2016 Published  February 2017

Fund Project: S. Wu is supported in part by a grant from China Scholarship Council; J. Shi is partially supported by US-NSF grant DMS-1313243 and B. Wu is partially supported by National Natural Science Foundation of China grant No. 11271100.

An attraction-repulsion chemotaxis model with nonlinear chemotactic sensitivity functions and growth source is considered. The global-in-time existence and boundedness of solutions are proved under some conditions on the nonlinear sensitivity functions and growth source function. Our results improve the earlier ones for the linear sensitivity functions.

Citation: Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050
References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions.Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Comm. Pure Appl. Math., 17 (1964), 35-92.  doi: 10.1002/cpa.3160170104.  Google Scholar

[3]

M. AidaK. OsakiT. TsujikawaA. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.  doi: 10.1016/j.nonrwa.2004.08.011.  Google Scholar

[4]

N. BellomoA. BellouquidY. S. Tao and M. Winkler, Towards a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[5]

T. CiéslakP. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ, 81 (2008), 105-117.  doi: 10.4064/bc81-0-7.  Google Scholar

[6]

T. Ciéslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[7]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.  Google Scholar

[8]

K. FujieM. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic KellerSegel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.  doi: 10.1002/mma.3149.  Google Scholar

[9]

K. Fujie and T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38 (2014), 140-143.  doi: 10.1016/j.aml.2014.07.021.  Google Scholar

[10]

M. A. GatesV. M. CoupeE. M. TorresR. A. Fricker-Gates and S. B. Dunnett, Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit, Eur. J. Neurosci., 19 (2004), 831-844.  doi: 10.1111/j.1460-9568.2004.03213.x.  Google Scholar

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  doi: 10.1007/978-3-642-61798-0.  Google Scholar
[12]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623.  doi: 10.1007/BF01445268.  Google Scholar

[13]

D. Horstmann and G. F. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[15]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.  doi: 10.1016/j.jmaa.2014.09.049.  Google Scholar

[16]

H. Y. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080.  Google Scholar

[17]

H.Y. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.  Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1002/mma.3080.  Google Scholar

[19]

O. A. LadyzhenskaiaV. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Soc., (1988).   Google Scholar

[20]

X. Li, Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci., 39 (2016), 289-301.  doi: 10.1002/mma.3477.  Google Scholar

[21]

X. Li and Z. Y. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[22]

X. Li and Z. Y. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198.  doi: 10.1093/imamat/hxv033.  Google Scholar

[23]

J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 1751-3758.  doi: 10.1080/17513758.2011.571722.  Google Scholar

[24]

D. M. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.  doi: 10.1002/mma.3240.  Google Scholar

[25]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.  Google Scholar

[26]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, B. Math. Biol., 65 (2003), 693-730.  doi: 10.1016/S0092-8240(03)00030-2.  Google Scholar

[27]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[28]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[29]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[30]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.  doi: 10.1.1.641.4757.  Google Scholar

[31]

B. PerthameC. SchmeiserM. Tang and N. Vauchelet, Travelling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270.  doi: 10.1088/0951-7715/24/4/012.  Google Scholar

[32]

R. K. Shi and W. K. Wang, Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520.  doi: 10.1016/j.jmaa.2014.10.006.  Google Scholar

[33]

Y. S. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.  doi: 10.3934/dcdsb.2013.18.2705.  Google Scholar

[34]

Y. S. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[35]

Y. S. Tao and M. Winkler, A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.  Google Scholar

[36]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Partial. Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[37]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[38]

Z. A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Commun. Pure Appl. Anal., 12 (2013), 3027-3046.  doi: 10.3934/cpaa.2013.12.3027.  Google Scholar

[39]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[40]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.  doi: 10.1002/mana.200810838.  Google Scholar

[41]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[42]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[43]

X. S. YangD. DormannA. E. Münsterberg and C. J. Weijer, Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8, Dev. Cell, 3 (2002), 425-437.  doi: 10.1016/S1534-5807(02)00256-3.  Google Scholar

[44]

Q. S. Zhang and Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570-584.  doi: 10.1002/zamm.201400311.  Google Scholar

[45]

J. S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[46]

P. ZhengC. L. MuX. G. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.  Google Scholar

[47]

P. ZhengC. L. MuX. G. Hu and Q. H. Zhang, Global boundedness in a quasilinear chemotaxis system with signal-dependent sensitivity, J. Math. Anal. Appl., 428 (2015), 508-524.  doi: 10.1016/j.jmaa.2015.03.047.  Google Scholar

show all references

References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions.Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Comm. Pure Appl. Math., 17 (1964), 35-92.  doi: 10.1002/cpa.3160170104.  Google Scholar

[3]

M. AidaK. OsakiT. TsujikawaA. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.  doi: 10.1016/j.nonrwa.2004.08.011.  Google Scholar

[4]

N. BellomoA. BellouquidY. S. Tao and M. Winkler, Towards a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[5]

T. CiéslakP. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ, 81 (2008), 105-117.  doi: 10.4064/bc81-0-7.  Google Scholar

[6]

T. Ciéslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[7]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.  Google Scholar

[8]

K. FujieM. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic KellerSegel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.  doi: 10.1002/mma.3149.  Google Scholar

[9]

K. Fujie and T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38 (2014), 140-143.  doi: 10.1016/j.aml.2014.07.021.  Google Scholar

[10]

M. A. GatesV. M. CoupeE. M. TorresR. A. Fricker-Gates and S. B. Dunnett, Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit, Eur. J. Neurosci., 19 (2004), 831-844.  doi: 10.1111/j.1460-9568.2004.03213.x.  Google Scholar

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  doi: 10.1007/978-3-642-61798-0.  Google Scholar
[12]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623.  doi: 10.1007/BF01445268.  Google Scholar

[13]

D. Horstmann and G. F. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[15]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.  doi: 10.1016/j.jmaa.2014.09.049.  Google Scholar

[16]

H. Y. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080.  Google Scholar

[17]

H.Y. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.  Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1002/mma.3080.  Google Scholar

[19]

O. A. LadyzhenskaiaV. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Soc., (1988).   Google Scholar

[20]

X. Li, Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci., 39 (2016), 289-301.  doi: 10.1002/mma.3477.  Google Scholar

[21]

X. Li and Z. Y. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[22]

X. Li and Z. Y. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198.  doi: 10.1093/imamat/hxv033.  Google Scholar

[23]

J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 1751-3758.  doi: 10.1080/17513758.2011.571722.  Google Scholar

[24]

D. M. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.  doi: 10.1002/mma.3240.  Google Scholar

[25]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.  Google Scholar

[26]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, B. Math. Biol., 65 (2003), 693-730.  doi: 10.1016/S0092-8240(03)00030-2.  Google Scholar

[27]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[28]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[29]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[30]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.  doi: 10.1.1.641.4757.  Google Scholar

[31]

B. PerthameC. SchmeiserM. Tang and N. Vauchelet, Travelling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270.  doi: 10.1088/0951-7715/24/4/012.  Google Scholar

[32]

R. K. Shi and W. K. Wang, Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520.  doi: 10.1016/j.jmaa.2014.10.006.  Google Scholar

[33]

Y. S. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.  doi: 10.3934/dcdsb.2013.18.2705.  Google Scholar

[34]

Y. S. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[35]

Y. S. Tao and M. Winkler, A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.  Google Scholar

[36]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Partial. Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[37]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[38]

Z. A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Commun. Pure Appl. Anal., 12 (2013), 3027-3046.  doi: 10.3934/cpaa.2013.12.3027.  Google Scholar

[39]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[40]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.  doi: 10.1002/mana.200810838.  Google Scholar

[41]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[42]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[43]

X. S. YangD. DormannA. E. Münsterberg and C. J. Weijer, Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8, Dev. Cell, 3 (2002), 425-437.  doi: 10.1016/S1534-5807(02)00256-3.  Google Scholar

[44]

Q. S. Zhang and Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570-584.  doi: 10.1002/zamm.201400311.  Google Scholar

[45]

J. S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[46]

P. ZhengC. L. MuX. G. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.  Google Scholar

[47]

P. ZhengC. L. MuX. G. Hu and Q. H. Zhang, Global boundedness in a quasilinear chemotaxis system with signal-dependent sensitivity, J. Math. Anal. Appl., 428 (2015), 508-524.  doi: 10.1016/j.jmaa.2015.03.047.  Google Scholar

Figure 1.  Regions in (p, q) plane where the global existence and boundedness of solutions to (1.9) are proved. The regions labelled by (), (), () and (iv) correspond to the ones defined in Theorems 1.1 and 1.2, and for the region labelled with?, the result is not known. Left: n ≤ 2; Right: n > 2

1. $n = 1, 2$, and $0\le p, q\le 2/n$, or $2/n\le \max\{p, q\}\le r-1$ and $b$ large; or
2. $n\ge 3$, and $0\le p, q\le 2/n$, or $1\le \max\{p, q\}\le r-1$ and $b$ large.

[1]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[2]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[3]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[8]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[11]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[12]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[15]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[18]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[19]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[20]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (123)
  • Cited by (4)

Other articles
by authors

[Back to Top]