In this paper, we consider the critical nonlinear Schrödinger equations in ${\mathbb{R}^2}$ with an oscillating nonlinearity, in a radial geometry. We numerically investigate the influence of the oscillations on the time of existence for the corresponding solution, on the spirit of the recent result of Cazenave and Scialom. It can be observed that the solution converges to the solution of a limit equation obtained with the weak limit of the oscillatory term, starting either with Gaussian data as well as standing waves solutions.
Citation: |
[1] |
P. Antonelli, J.-C. Saut and C. Sparber, well-posedness, averagin of NLS with timeperiodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.
![]() ![]() |
[2] |
A. Babin, A. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.
doi: 10.1002/cpa.20356.![]() ![]() ![]() |
[3] |
M. Barton-Smith, A. Debussche and L. Di Menza, Numerical Study of two-dimensional stochastic NLS Equations,, Num. Meth. for PDE's, 21 (2005), 810-842.
doi: 10.1002/num.20064.![]() ![]() ![]() |
[4] |
C.-H. Bruneau, L. Di Menza and T. Lehner, Numerical resolution of some nonlinear Schrödinger equations in plasmas, Num. Meth. for PDE's, 15 (1999), 672-696.
doi: 10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.3.CO;2-A.![]() ![]() ![]() |
[5] |
X. Carvajal, M. Panthee and M. Scialom, On the critical KDV equation with time-oscillating nonlinearity, Differential Integral Equations, 24 (2011), 541-567.
![]() ![]() |
[6] |
T. Cazenave and A. Haraux, Introduction aux problèmes, d'évolution semi-linéaires, Math. et Applications, Ellipses 1990.
![]() ![]() |
[7] |
T. Cazenave and M. Scialom, A Schrödinger equation with time-oscillating nonlinearity, Rev. Mat. Complut, 23 (2010), 321-339.
doi: 10.1007/s13163-009-0018-7.![]() ![]() ![]() |
[8] |
I. Damergi, Equation de Schrödinger non linéaire avecnon-linéarité oscillante, Ph. D Thesis, Ecole Polytechnique de Tunisie, (2014).
![]() |
[9] |
I. Damergi and O. Goubet, Blowup solutions to the nonlinear Schrodinger equation with oscillating nonlinearities, J. of Math. Anal., Appl., 352 (2009), 336-344.
doi: 10.1016/j.jmaa.2008.07.079.![]() ![]() ![]() |
[10] |
A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162 (2002), 131-154.
doi: 10.1016/S0167-2789(01)00379-7.![]() ![]() ![]() |
[11] |
L. Di Menza, Absorbing boundary conditions on a hypersurface for the linear Schrödinger equation, Appl. Math. Lett., 9 (1996), 55-59.
doi: 10.1016/0893-9659(96)00051-1.![]() ![]() ![]() |
[12] |
L. Di Menza, Numerical computations of solitons in optical systems, M2AN, 3 (2009), 173-208.
doi: 10.1051/m2an:2008044.![]() ![]() ![]() |
[13] |
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations, J. Math. Phy, 18 (1977), 1794-1797.
doi: 10.1063/1.523491.![]() ![]() ![]() |
[14] |
V. Konotop and P. Pacciani, On collapse in the nonlinear Schrödinger equation with time dependent nonlinearity. Application to Bose-Einstein condensates, arXiv: cond-mat/0504493 vl 19 apr 2005.
doi: 10.1007/10928028_14.![]() ![]() ![]() |
[15] |
M. Kunze, Infinitely many radial solutions of a variational problem related to dispersionmanaged optic fibers, Proceedings of the AMS, 131 (2003), 2181-2188.
doi: 10.1090/S0002-9939-02-06780-1.![]() ![]() ![]() |
[16] |
H. Liu and E. Tadmor, Rotation prevents finite time breakdown, Phys. D, 188 (2004), 262-276.
doi: 10.1016/j.physd.2003.07.006.![]() ![]() ![]() |
[17] |
G. D. Montesinos and V. M. Pérez-Garcia, Pérez-Garcia, Numerical studies of stabilized Townes solitons, Math. and Computers in Simulation, 69 (2005), 447-456.
doi: 10.1016/j.matcom.2005.03.009.![]() ![]() ![]() |
[18] |
M. Panthee and M. Scialom, On the supercritical KdV equation with time-oscillating nonlinearity, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1191-1212.
doi: 10.1007/s00030-012-0204-z.![]() ![]() ![]() |
[19] |
C. Sulem and P. L Sulem, The nonlinear Schröinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.
![]() ![]() |
[20] |
V. E. Zakharov, Collapse of Lungmuir waves, Soviet Phys. JETP, vol., 35 (1972), 908-914.
![]() ![]() |
[21] |
V. Zharnitsky, E. Grenier, Ch. Jones and S. Turitsyn, Stabilizing effects of dispersion management, Physica D, 152-153 (2001), 794-817.
doi: 10.1016/S0167-2789(01)00213-5.![]() ![]() ![]() |