• Previous Article
    Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of solutions to an attraction-repulsion chemotaxis model with growth
May  2017, 16(3): 1059-1082. doi: 10.3934/cpaa.2017051

Stabilizing blow up solutions to nonlinear schrÖdinger equations

1. 

LMR EA 4535, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP1039,51687 Reims cedex, France

2. 

LUTH CNRS UMR 8102, Observatoire de Paris, 5 place Jules Janssen 92195 Meudon cedex, France

3. 

LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex, France

Received  July 2016 Revised  December 2016 Published  February 2017

In this paper, we consider the critical nonlinear Schrödinger equations in ${\mathbb{R}^2}$ with an oscillating nonlinearity, in a radial geometry. We numerically investigate the influence of the oscillations on the time of existence for the corresponding solution, on the spirit of the recent result of Cazenave and Scialom. It can be observed that the solution converges to the solution of a limit equation obtained with the weak limit of the oscillatory term, starting either with Gaussian data as well as standing waves solutions.

Citation: Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051
References:
[1]

P. AntonelliJ.-C. Saut and C. Sparber, well-posedness, averagin of NLS with timeperiodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.   Google Scholar

[2]

A. BabinA. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.  doi: 10.1002/cpa.20356.  Google Scholar

[3]

M. Barton-SmithA. Debussche and L. Di Menza, Numerical Study of two-dimensional stochastic NLS Equations,, Num. Meth. for PDE's, 21 (2005), 810-842.  doi: 10.1002/num.20064.  Google Scholar

[4]

C.-H. BruneauL. Di Menza and T. Lehner, Numerical resolution of some nonlinear Schrödinger equations in plasmas, Num. Meth. for PDE's, 15 (1999), 672-696.  doi: 10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.3.CO;2-A.  Google Scholar

[5]

X. CarvajalM. Panthee and M. Scialom, On the critical KDV equation with time-oscillating nonlinearity, Differential Integral Equations, 24 (2011), 541-567.   Google Scholar

[6]

T. Cazenave and A. Haraux, Introduction aux problèmes, d'évolution semi-linéaires, Math. et Applications, Ellipses 1990.  Google Scholar

[7]

T. Cazenave and M. Scialom, A Schrödinger equation with time-oscillating nonlinearity, Rev. Mat. Complut, 23 (2010), 321-339.  doi: 10.1007/s13163-009-0018-7.  Google Scholar

[8]

I. Damergi, Equation de Schrödinger non linéaire avecnon-linéarité oscillante, Ph. D Thesis, Ecole Polytechnique de Tunisie, (2014).   Google Scholar

[9]

I. Damergi and O. Goubet, Blowup solutions to the nonlinear Schrodinger equation with oscillating nonlinearities, J. of Math. Anal., Appl., 352 (2009), 336-344.  doi: 10.1016/j.jmaa.2008.07.079.  Google Scholar

[10]

A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162 (2002), 131-154.  doi: 10.1016/S0167-2789(01)00379-7.  Google Scholar

[11]

L. Di Menza, Absorbing boundary conditions on a hypersurface for the linear Schrödinger equation, Appl. Math. Lett., 9 (1996), 55-59.  doi: 10.1016/0893-9659(96)00051-1.  Google Scholar

[12]

L. Di Menza, Numerical computations of solitons in optical systems, M2AN, 3 (2009), 173-208.  doi: 10.1051/m2an:2008044.  Google Scholar

[13]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations, J. Math. Phy, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[14]

V. Konotop and P. Pacciani, On collapse in the nonlinear Schrödinger equation with time dependent nonlinearity. Application to Bose-Einstein condensates, arXiv: cond-mat/0504493 vl 19 apr 2005. doi: 10.1007/10928028_14.  Google Scholar

[15]

M. Kunze, Infinitely many radial solutions of a variational problem related to dispersionmanaged optic fibers, Proceedings of the AMS, 131 (2003), 2181-2188.  doi: 10.1090/S0002-9939-02-06780-1.  Google Scholar

[16]

H. Liu and E. Tadmor, Rotation prevents finite time breakdown, Phys. D, 188 (2004), 262-276.  doi: 10.1016/j.physd.2003.07.006.  Google Scholar

[17]

G. D. Montesinos and V. M. Pérez-Garcia, Pérez-Garcia, Numerical studies of stabilized Townes solitons, Math. and Computers in Simulation, 69 (2005), 447-456.  doi: 10.1016/j.matcom.2005.03.009.  Google Scholar

[18]

M. Panthee and M. Scialom, On the supercritical KdV equation with time-oscillating nonlinearity, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1191-1212.  doi: 10.1007/s00030-012-0204-z.  Google Scholar

[19]

C. Sulem and P. L Sulem, The nonlinear Schröinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.  Google Scholar

[20]

V. E. Zakharov, Collapse of Lungmuir waves, Soviet Phys. JETP, vol., 35 (1972), 908-914.   Google Scholar

[21]

V. ZharnitskyE. GrenierCh. Jones and S. Turitsyn, Stabilizing effects of dispersion management, Physica D, 152-153 (2001), 794-817.  doi: 10.1016/S0167-2789(01)00213-5.  Google Scholar

show all references

References:
[1]

P. AntonelliJ.-C. Saut and C. Sparber, well-posedness, averagin of NLS with timeperiodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.   Google Scholar

[2]

A. BabinA. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.  doi: 10.1002/cpa.20356.  Google Scholar

[3]

M. Barton-SmithA. Debussche and L. Di Menza, Numerical Study of two-dimensional stochastic NLS Equations,, Num. Meth. for PDE's, 21 (2005), 810-842.  doi: 10.1002/num.20064.  Google Scholar

[4]

C.-H. BruneauL. Di Menza and T. Lehner, Numerical resolution of some nonlinear Schrödinger equations in plasmas, Num. Meth. for PDE's, 15 (1999), 672-696.  doi: 10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.3.CO;2-A.  Google Scholar

[5]

X. CarvajalM. Panthee and M. Scialom, On the critical KDV equation with time-oscillating nonlinearity, Differential Integral Equations, 24 (2011), 541-567.   Google Scholar

[6]

T. Cazenave and A. Haraux, Introduction aux problèmes, d'évolution semi-linéaires, Math. et Applications, Ellipses 1990.  Google Scholar

[7]

T. Cazenave and M. Scialom, A Schrödinger equation with time-oscillating nonlinearity, Rev. Mat. Complut, 23 (2010), 321-339.  doi: 10.1007/s13163-009-0018-7.  Google Scholar

[8]

I. Damergi, Equation de Schrödinger non linéaire avecnon-linéarité oscillante, Ph. D Thesis, Ecole Polytechnique de Tunisie, (2014).   Google Scholar

[9]

I. Damergi and O. Goubet, Blowup solutions to the nonlinear Schrodinger equation with oscillating nonlinearities, J. of Math. Anal., Appl., 352 (2009), 336-344.  doi: 10.1016/j.jmaa.2008.07.079.  Google Scholar

[10]

A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162 (2002), 131-154.  doi: 10.1016/S0167-2789(01)00379-7.  Google Scholar

[11]

L. Di Menza, Absorbing boundary conditions on a hypersurface for the linear Schrödinger equation, Appl. Math. Lett., 9 (1996), 55-59.  doi: 10.1016/0893-9659(96)00051-1.  Google Scholar

[12]

L. Di Menza, Numerical computations of solitons in optical systems, M2AN, 3 (2009), 173-208.  doi: 10.1051/m2an:2008044.  Google Scholar

[13]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations, J. Math. Phy, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[14]

V. Konotop and P. Pacciani, On collapse in the nonlinear Schrödinger equation with time dependent nonlinearity. Application to Bose-Einstein condensates, arXiv: cond-mat/0504493 vl 19 apr 2005. doi: 10.1007/10928028_14.  Google Scholar

[15]

M. Kunze, Infinitely many radial solutions of a variational problem related to dispersionmanaged optic fibers, Proceedings of the AMS, 131 (2003), 2181-2188.  doi: 10.1090/S0002-9939-02-06780-1.  Google Scholar

[16]

H. Liu and E. Tadmor, Rotation prevents finite time breakdown, Phys. D, 188 (2004), 262-276.  doi: 10.1016/j.physd.2003.07.006.  Google Scholar

[17]

G. D. Montesinos and V. M. Pérez-Garcia, Pérez-Garcia, Numerical studies of stabilized Townes solitons, Math. and Computers in Simulation, 69 (2005), 447-456.  doi: 10.1016/j.matcom.2005.03.009.  Google Scholar

[18]

M. Panthee and M. Scialom, On the supercritical KdV equation with time-oscillating nonlinearity, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1191-1212.  doi: 10.1007/s00030-012-0204-z.  Google Scholar

[19]

C. Sulem and P. L Sulem, The nonlinear Schröinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.  Google Scholar

[20]

V. E. Zakharov, Collapse of Lungmuir waves, Soviet Phys. JETP, vol., 35 (1972), 908-914.   Google Scholar

[21]

V. ZharnitskyE. GrenierCh. Jones and S. Turitsyn, Stabilizing effects of dispersion management, Physica D, 152-153 (2001), 794-817.  doi: 10.1016/S0167-2789(01)00213-5.  Google Scholar

Figure 1.  Profile of the solutions of (5) versus time for $ \Omega = 0 $, $ \Omega = 4 $ et $ \Omega = +\infty $
Figure 2.  Profile of the lifespan $ T_\Omega $ of the solution $ u^\Omega $ as a function of $ \Omega $
Figure 3.  Profiles of $ |u| $ versus $ x $ at final time computed with Dirichlet conditions (dot-dashed) and with transparent condition (continuous) starting from Gaussian data (dotted), linear case, amplitude $ q = 1 $, $ d = 2 $
Figure 4.  Profiles of $ |u| $ versus $ x $ and final time; computations performed with transparent conditions(up) and with Dirichlet condition (down) starting from the stationary state with mass excess $ \varepsilon = 0.2 $, one-dimensional case
Figure 5.  Profile of the solution amplitude at the origin versus time for $ t\in [80,100] $; computations performed with transparent conditions(continuous) and with Dirichlet condition (dashed) starting from the stationary state with mass excess $ \varepsilon = 0.2 $, one-dimensional case
Figure 6.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $ for different values of space and time steps. Convergence to the exact global solution $ e^{i\mu t} R_\mu(x) $ is observed
Figure 7.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 0 $ (unperturbed case), $ 7 $, $ 8 $, $ 10 $, $ 40 $, Gaussian initial data with $ q = 4 $
Figure 8.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 100 $, $ 200 $, $ 1000 $, $ 5000 $ and limit case, Gaussian initial data with $ q = 4 $
Figure 9.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 0 $ (unperturbed case), $ 1.4 $, $ 1.43 $, $ 2 $, Gaussian initial data with $ q = 3 $
Figure 10.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 10 $, $ 40 $, $ 100 $ and limit case, Gaussian initial data with $ q = 3 $
Figure 11.  Plot of $ |u(t, .)| $ at different times ($ t = 0 $, $ 1 $, $ 2 $, $ 3 $, $ 4 $), $ g_1 = 4 $
Figure 12.  Plot of $ |u(t, .)| $ at different times ($ t = 0 $, $ 1 $, $ 2 $, $ 3 $, $ 4 $), $ g_1 = 2 $
Figure 13.  Plot of $ |u(t, .)| $ at different times ($ t = 0 $, $ 1 $, $ 2 $, $ 3 $, $ 4 $), $ g_1 = 1 $
Figure 14.  Plot of $ |u(t, .)| $ at different times ($ t = 0 $, $ 1 $, $ 2 $, $ 3 $, $ 4 $), $ g_1 = \frac12 $
Figure 15.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 0 $, $ 3 $, $ 5 $, $ 20 $, $ 40 $ and comparison with the linear case, Gaussian initial data
Figure 16.  Plot of the mean radius $ r_m(t) $ versus $ t $, $ \Omega = 0 $, $ 3 $, $ 5 $, $ 20 $, $ 40 $ and comparison with the linear case, Gaussian initial data
Figure 17.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 0 $, $ 0.2 $, $ 0.5 $, $ 1 $, $ 20 $ and comparison with the linear case, soliton-like initial data
Figure 18.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 20 $, $ 40 $, $ 80 $, soliton-like initial data
Figure 19.  Plot of the mean radius $ r_m(t) $ versus $ t $, $ \Omega = 20 $, $ 40 $, $ 80 $, soliton-like initial data
Figure 20.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 40 $, $ 70 $, $ 100 $, $ 200 $ and comparison with the limit nonlinear case, soliton-like initial data
Figure 21.  Plot of the mean radius $ r_m(t) $ versus $ t $, $ \Omega = 40 $, $ 70 $, $ 100 $, $ 200 $ and comparison with the limit nonlinear case, soliton-like initial data
Figure 22.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $, $ \Omega = 20 $, $ 40 $, $ 80 $, Gaussian normalized Cauchy data
Figure 23.  Plot of the mean radius $ r_m(t) $ versus $ t $, $ \Omega = 20 $, $ 40 $, $ 80 $, Gaussian normalized Cauchy data
Figure 24.  Plot of $ \|u(t, .)\|_{L^\infty(\mathbb{R}^2) } $ versus $ t $ at small times, $ \Omega = 40 $, $ 80 $, $ 150 $, $ 300 $ and comparison with the limit nonlinear case, normalized Gaussian initial data
Figure 25.  Plot of the mean radius $ r_m(t) $ versus $ t $ at small times, $ \Omega = 40 $, $ 80 $, $ 150 $, $ 300 $ and comparison with the limit nonlinear case, normalized Gaussian initial data
[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]