May  2017, 16(3): 1083-1102. doi: 10.3934/cpaa.2017052

Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities

SISSA -International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

* Current address: Département de Mathématique, Université de Mons, Place du Parc 20, B-7000 Mons, Belgium.

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: Work supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Progetto di Ricerca 2016: Problemi differenziali non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni".

We study the second order nonlinear differential equation
$ u'' + \sum\limits_{i = 1}^m {} {\alpha _i}{a_i}(x){g_i}(u) - \sum\limits_{j = 1}^{m + 1} {} {\beta _j}{b_j}(x){k_j}(u) = 0,{\rm{ }} $
where $\alpha_{i}, \beta_{j}>0$, $a_{i}(x), b_{j}(x)$ are non-negative Lebesgue integrable functions defined in $\mathopen{[}0, L\mathclose{]}$, and the nonlinearities $g_{i}(s), k_{j}(s)$ are continuous, positive and satisfy suitable growth conditions, as to cover the classical superlinear equation $u"+a(x)u.{p} = 0$, with $p>1$.When the positive parameters $\beta_{j}$ are sufficiently large, we prove the existence of at least $2.{m}-1$positive solutions for the Sturm-Liouville boundary value problems associated with the equation.The proof is based on the Leray-Schauder topological degree for locally compact operators on open and possibly unbounded sets.Finally, we deal with radially symmetric positive solutions for the Dirichlet problems associated with elliptic PDEs.
Citation: Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052
References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave, convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. L. T. Anderson, Stability of time-dependent particlelike solutions in nonlinear field theories. Ⅱ, J. Math. Phys., 12 (1971), 945-952.   Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

D. BonheureJ. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[6]

A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc., to appear. Google Scholar

[7]

L. H. ErbeS. C. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184 (1994), 640-648.  doi: 10.1006/jmaa.1994.1227.  Google Scholar

[8]

L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.  doi: 10.2307/2160465.  Google Scholar

[9]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar

[10]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar

[11]

G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar

[12]

M. GaudenziP. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar

[13]

M. GaudenziP. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight, Commun. Pure Appl. Anal., 2 (2003), 411-423.  doi: 10.3934/cpaa.2003.2.411.  Google Scholar

[14]

P. M. Girão and J. M. Gomes, Multi-bump nodal solutions for an indefinite non-homogeneous elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 797-817.  doi: 10.1017/S0308210508000474.  Google Scholar

[15]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.   Google Scholar

[16]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar

[17]

R. ManásevichF. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional pLaplacian, Differential Integral Equations, 8 (1995), 213-222.   Google Scholar

[18]

R. D. Nussbaum, The fixed point index and some applications, vol. 94 of Séminaire de Mathématiques Suprieures [Seminar on Higher Mathematics], Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar

[19]

R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological methods for ordinary differential equations (Montecatini Terme, 1991), vol. 1537 of Lecture Notes in Math. , Springer, Berlin, 1993, pp. 143-205. doi: 10.1007/BFb0085077.  Google Scholar

[20]

H.-J. Ruppen, Multiplicity results for a semilinear. elliptic differential equation with conflicting nonlinearities, J. Differential Equations, 147 (1998), 79-122.  doi: 10.1006/jdeq.1998.3419.  Google Scholar

show all references

References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave, convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. L. T. Anderson, Stability of time-dependent particlelike solutions in nonlinear field theories. Ⅱ, J. Math. Phys., 12 (1971), 945-952.   Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

D. BonheureJ. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[6]

A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc., to appear. Google Scholar

[7]

L. H. ErbeS. C. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184 (1994), 640-648.  doi: 10.1006/jmaa.1994.1227.  Google Scholar

[8]

L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.  doi: 10.2307/2160465.  Google Scholar

[9]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar

[10]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar

[11]

G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar

[12]

M. GaudenziP. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar

[13]

M. GaudenziP. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight, Commun. Pure Appl. Anal., 2 (2003), 411-423.  doi: 10.3934/cpaa.2003.2.411.  Google Scholar

[14]

P. M. Girão and J. M. Gomes, Multi-bump nodal solutions for an indefinite non-homogeneous elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 797-817.  doi: 10.1017/S0308210508000474.  Google Scholar

[15]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.   Google Scholar

[16]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar

[17]

R. ManásevichF. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional pLaplacian, Differential Integral Equations, 8 (1995), 213-222.   Google Scholar

[18]

R. D. Nussbaum, The fixed point index and some applications, vol. 94 of Séminaire de Mathématiques Suprieures [Seminar on Higher Mathematics], Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar

[19]

R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological methods for ordinary differential equations (Montecatini Terme, 1991), vol. 1537 of Lecture Notes in Math. , Springer, Berlin, 1993, pp. 143-205. doi: 10.1007/BFb0085077.  Google Scholar

[20]

H.-J. Ruppen, Multiplicity results for a semilinear. elliptic differential equation with conflicting nonlinearities, J. Differential Equations, 147 (1998), 79-122.  doi: 10.1006/jdeq.1998.3419.  Google Scholar

Figure 1.  The figure shows an example of $ 3 $ positive solutions to the Dirichlet problem associated with (1.1) on $ \mathopen{[}0, 3\pi\mathclose{]} $, where $ \tau = \pi $, $ \sigma = 2\pi $, $ L = 3\pi $, $ a (x) = \sin^{+}(x) $, $ b (x) = \sin^{-}(x) $ (as in the upper part of the figure), $ g (s) = s^{2} $, $ k (s) = s^{3} $ (for $ s>0 $).For $ \mu = 1 $, Theorem 1.1 ensures the existence of $ 3 $ positive solutions, whose graphs are located in the lower part of the figure
Figure 2.  The figure shows an example of $ 3 $ positive solutions to the equation $ u''+\alpha_{1}a_{1}(x) g_{1}(u)-\beta_{1}b_{1}(x) k_{1}(u)+\alpha_{2}a_{2}(x) g_{2}(u) = 0 $ on $ \mathopen{[}0, 5\mathclose{]} $ with $ u (0) = u'(5) = 0 $, whose graphs are located in the lower part of the figure.For this simulation we have chosen $ \alpha_{1} = 10 $, $ \alpha_{2} = 2 $, $ \beta_{1} = 20 $ and the weight functions as in the upper part of the figure, that is $ a_{1}(x) = 1 $ in $ \mathopen{[}0, 2\mathclose{]} $, $ -b_{1}(x) = -\sin (\pi x) $ in $ \mathopen{[}2, 3\mathclose{]} $, $ a_{2}(x) = 0 $ in $ \mathopen{[}3, 4\mathclose{]} $, $ a_{2}(x) = -\sin (\pi x) $ in $ \mathopen{[}4, 5\mathclose{]} $.Moreover, we have taken $ g_{1}(s) = g_{2}(s) = s\arctan (s) $ and $ k_{1}(s) = s/(1+s^{2}) $ (for $ s>0 $).Notice that $ k_{1}(s) $ has not a superlinear behavior, since $ \lim_{s\to 0^{+}}k_{1}(s)/s = 1>0 $ and $ \lim_{s\to +\infty}k_{1}(s)/s = 0 $.Then [10,Theorem 5.3] does not apply, contrary to Theorem 4.1
[1]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[4]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[5]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[6]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[7]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[10]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[11]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[12]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[13]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[14]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[15]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[18]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[19]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[20]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (113)
  • Cited by (1)

Other articles
by authors

[Back to Top]