July  2017, 16(4): 1103-1120. doi: 10.3934/cpaa.2017053

Traveling waves in a three species competition-cooperation system

1. 

Department of Mathematics and Statistics, University of North Carolina Wilmington, Wilmington, NC 28403, USA

2. 

Department of Mathematics, California State University Northridge, CA 91330, USA

Received  March 2014 Revised  February 2017 Published  April 2017

This paper studies the traveling wave solutions to a three species competition cooperation system, which is derived from a spatially averaged and temporally delayed Lotka Volterra system. The existence of the traveling waves is investigated via a new type of monotone iteration method. The upper and lower solutions come from either the waves of KPP equation or those of certain two species Lotka Volterra system. We also derive the asymptotics and uniqueness of the wave solutions.

Citation: Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053
References:
[1]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik und Physik, 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[2]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. Poincare H., Anal. non Lineaire, 9 (1992), 497-572.   Google Scholar

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Diff. Eqs., 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.  Google Scholar

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.  doi: 10.1016/S1468-1218(02)00077-9.  Google Scholar

[6]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Communications on Pure and Applied Analysis, 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model Ⅰ: Singular Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003), 79-95.  doi: 10.3934/dcdsb.2003.3.79.  Google Scholar

[8]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.  doi: 10.1007/s10884-010-9159-0.  Google Scholar

[9]

L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[10]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124.   Google Scholar

[11]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis, 65 (2006), 301-320.  doi: 10.1016/j.na.2005.05.014.  Google Scholar

[12]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods & Applications, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[13]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.  doi: 10.1016/S0362-546X(99)00261-8.  Google Scholar

[14]

Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis, Theory, methods & Applications, 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[15]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system revisited, Discrete and Continuous Dynamical Systems -Series B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[16]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowestwave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[17]

P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge University Press, 129 (1999), 125-152.  doi: 10.1017/S0308210500027499.  Google Scholar

[18]

D. Sattinger, On the stability of traveling waves, Adv. in Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[19]

I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr. , vol 140, Amer. Math. Soc. , Providence, RI. 1994.  Google Scholar

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

show all references

References:
[1]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik und Physik, 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[2]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. Poincare H., Anal. non Lineaire, 9 (1992), 497-572.   Google Scholar

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Diff. Eqs., 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.  Google Scholar

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.  doi: 10.1016/S1468-1218(02)00077-9.  Google Scholar

[6]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Communications on Pure and Applied Analysis, 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.  Google Scholar

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model Ⅰ: Singular Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003), 79-95.  doi: 10.3934/dcdsb.2003.3.79.  Google Scholar

[8]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.  doi: 10.1007/s10884-010-9159-0.  Google Scholar

[9]

L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[10]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124.   Google Scholar

[11]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis, 65 (2006), 301-320.  doi: 10.1016/j.na.2005.05.014.  Google Scholar

[12]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods & Applications, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.  Google Scholar

[13]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.  doi: 10.1016/S0362-546X(99)00261-8.  Google Scholar

[14]

Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis, Theory, methods & Applications, 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[15]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system revisited, Discrete and Continuous Dynamical Systems -Series B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[16]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowestwave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[17]

P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge University Press, 129 (1999), 125-152.  doi: 10.1017/S0308210500027499.  Google Scholar

[18]

D. Sattinger, On the stability of traveling waves, Adv. in Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[19]

I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr. , vol 140, Amer. Math. Soc. , Providence, RI. 1994.  Google Scholar

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[1]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[2]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[4]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[9]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[10]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[11]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[12]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[15]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[18]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (59)
  • Cited by (2)

Other articles
by authors

[Back to Top]