July  2017, 16(4): 1103-1120. doi: 10.3934/cpaa.2017053

Traveling waves in a three species competition-cooperation system

1. 

Department of Mathematics and Statistics, University of North Carolina Wilmington, Wilmington, NC 28403, USA

2. 

Department of Mathematics, California State University Northridge, CA 91330, USA

Received  March 2014 Revised  February 2017 Published  April 2017

This paper studies the traveling wave solutions to a three species competition cooperation system, which is derived from a spatially averaged and temporally delayed Lotka Volterra system. The existence of the traveling waves is investigated via a new type of monotone iteration method. The upper and lower solutions come from either the waves of KPP equation or those of certain two species Lotka Volterra system. We also derive the asymptotics and uniqueness of the wave solutions.

Citation: Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053
References:
[1]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik und Physik, 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.

[2]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. Poincare H., Anal. non Lineaire, 9 (1992), 497-572. 

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Diff. Eqs., 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.  doi: 10.1016/S1468-1218(02)00077-9.

[6]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Communications on Pure and Applied Analysis, 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model Ⅰ: Singular Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003), 79-95.  doi: 10.3934/dcdsb.2003.3.79.

[8]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.  doi: 10.1007/s10884-010-9159-0.

[9]

L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.  doi: 10.1016/j.nonrwa.2011.07.002.

[10]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124. 

[11]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis, 65 (2006), 301-320.  doi: 10.1016/j.na.2005.05.014.

[12]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods & Applications, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.

[13]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.  doi: 10.1016/S0362-546X(99)00261-8.

[14]

Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis, Theory, methods & Applications, 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.

[15]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system revisited, Discrete and Continuous Dynamical Systems -Series B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.

[16]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowestwave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.

[17]

P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge University Press, 129 (1999), 125-152.  doi: 10.1017/S0308210500027499.

[18]

D. Sattinger, On the stability of traveling waves, Adv. in Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.

[19]

I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr. , vol 140, Amer. Math. Soc. , Providence, RI. 1994.

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.

show all references

References:
[1]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik und Physik, 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.

[2]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. Poincare H., Anal. non Lineaire, 9 (1992), 497-572. 

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Diff. Eqs., 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.  doi: 10.1016/S1468-1218(02)00077-9.

[6]

X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Communications on Pure and Applied Analysis, 10 (2011), 141-160.  doi: 10.3934/cpaa.2011.10.141.

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model Ⅰ: Singular Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003), 79-95.  doi: 10.3934/dcdsb.2003.3.79.

[8]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.  doi: 10.1007/s10884-010-9159-0.

[9]

L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.  doi: 10.1016/j.nonrwa.2011.07.002.

[10]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124. 

[11]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis, 65 (2006), 301-320.  doi: 10.1016/j.na.2005.05.014.

[12]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods & Applications, 27 (1996), 579-587.  doi: 10.1016/0362-546X(95)00221-G.

[13]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.  doi: 10.1016/S0362-546X(99)00261-8.

[14]

Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis, Theory, methods & Applications, 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.

[15]

A. W. LeungX. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system revisited, Discrete and Continuous Dynamical Systems -Series B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.

[16]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowestwave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.

[17]

P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge University Press, 129 (1999), 125-152.  doi: 10.1017/S0308210500027499.

[18]

D. Sattinger, On the stability of traveling waves, Adv. in Math., 22 (1976), 312-355.  doi: 10.1016/0001-8708(76)90098-0.

[19]

I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr. , vol 140, Amer. Math. Soc. , Providence, RI. 1994.

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.

[1]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[2]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[3]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[4]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[5]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[6]

Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273

[7]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[8]

Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697

[9]

Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems and Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211

[10]

Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81

[11]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[12]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

[13]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[14]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[15]

Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021265

[16]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[17]

Buddhi Pantha, Judy Day, Suzanne Lenhart. Investigating the effects of intervention strategies in a spatio-temporal anthrax model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1607-1622. doi: 10.3934/dcdsb.2019242

[18]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[19]

Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010

[20]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (62)
  • HTML views (64)
  • Cited by (2)

Other articles
by authors

[Back to Top]