July  2017, 16(4): 1121-1134. doi: 10.3934/cpaa.2017054

Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. 

Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China

3. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

* Corresponding author

Received  September 2014 Revised  June 2016 Published  April 2017

Fund Project: The first author is supported by Fundamental Research Funds for the Central Universities: NS2014080.

The purpose of this paper is to investigate positive solutions of integral equations involving Bessel potential. Exploiting the moving plane method in integral form, we give the radial symmetry of both the domain and solutions of our integral equations in exterior domains and in annular domains respectively.

Citation: Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054
References:
[1]

R. Adams, Sobolev Spaces, in: Pure Appl. Math. , vol. 65, Academic Press, New York, 1975.  Google Scholar

[2]

A. D. Alexandroff, A characteristic property of the spheres, Ann. Math. Pura. Appl., 58 (1962), 303-354.  doi: 10.1007/BF02413056.  Google Scholar

[3]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[5]

L. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, Cmbridge University Press, 2000. doi: 10.1017/CBO9780511569203.  Google Scholar

[6]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phy., 68 (1979), 209-243.   Google Scholar

[7]

F. GladialiM. GrossiF. Pacella and P. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var., 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[8]

X. HanG. Lu and J. Zhu, Characterization of balls in terms of Bessel potential integral equation, J. Diff. Equa., 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[9]

X. HuangD. Li and L. Wang, Symmetry of integral equation systems with Bessel kernel on bounded domains, Nonlinear Analysis, 74 (2011), 494-500.  doi: 10.1016/j.na.2010.09.004.  Google Scholar

[10]

D. LiG. Ströhmer and L. Wang, Symmetry of integral equations on bounded domains, Proc. Amer. Math. Soc., 137 (2009), 3695-3702.  doi: 10.1090/S0002-9939-09-09987-0.  Google Scholar

[11]

Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Diff. Equa., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[12]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Analysis, 71 (2009), 1796-1906.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[13]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, arXiv: 1101.1649v1. doi: 10.1016/j.na.2011.11.036.  Google Scholar

[14]

C. MaW. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[15]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2009), 943-949.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[16]

V. Moroz and J. Schaftingen, Nonexistence and optimal decay of supersolutions to choquard equations in exterior domains, J. Diff. Equa., 254 (2013), 3089-3145.  doi: 10.1016/j.jde.2012.12.019.  Google Scholar

[17]

W. Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal., 137 (1997), 381-394.  doi: 10.1007/s002050050034.  Google Scholar

[18]

W. Reichel, Characterization of balls by Riesz-Potentials, Annali. di. Matematica, 188 (2009), 235-245.  doi: 10.1007/s10231-008-0073-6.  Google Scholar

[19]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[20]

E. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Ser. Appl. Math. , Vol. 32, Princeton Univ. Press, Princeton, NJ, 1970.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces, in: Pure Appl. Math. , vol. 65, Academic Press, New York, 1975.  Google Scholar

[2]

A. D. Alexandroff, A characteristic property of the spheres, Ann. Math. Pura. Appl., 58 (1962), 303-354.  doi: 10.1007/BF02413056.  Google Scholar

[3]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[5]

L. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, Cmbridge University Press, 2000. doi: 10.1017/CBO9780511569203.  Google Scholar

[6]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phy., 68 (1979), 209-243.   Google Scholar

[7]

F. GladialiM. GrossiF. Pacella and P. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var., 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[8]

X. HanG. Lu and J. Zhu, Characterization of balls in terms of Bessel potential integral equation, J. Diff. Equa., 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[9]

X. HuangD. Li and L. Wang, Symmetry of integral equation systems with Bessel kernel on bounded domains, Nonlinear Analysis, 74 (2011), 494-500.  doi: 10.1016/j.na.2010.09.004.  Google Scholar

[10]

D. LiG. Ströhmer and L. Wang, Symmetry of integral equations on bounded domains, Proc. Amer. Math. Soc., 137 (2009), 3695-3702.  doi: 10.1090/S0002-9939-09-09987-0.  Google Scholar

[11]

Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Diff. Equa., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[12]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Analysis, 71 (2009), 1796-1906.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[13]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, arXiv: 1101.1649v1. doi: 10.1016/j.na.2011.11.036.  Google Scholar

[14]

C. MaW. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[15]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2009), 943-949.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[16]

V. Moroz and J. Schaftingen, Nonexistence and optimal decay of supersolutions to choquard equations in exterior domains, J. Diff. Equa., 254 (2013), 3089-3145.  doi: 10.1016/j.jde.2012.12.019.  Google Scholar

[17]

W. Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal., 137 (1997), 381-394.  doi: 10.1007/s002050050034.  Google Scholar

[18]

W. Reichel, Characterization of balls by Riesz-Potentials, Annali. di. Matematica, 188 (2009), 235-245.  doi: 10.1007/s10231-008-0073-6.  Google Scholar

[19]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[20]

E. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Ser. Appl. Math. , Vol. 32, Princeton Univ. Press, Princeton, NJ, 1970.  Google Scholar

[1]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (72)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]