-
Previous Article
Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space
- CPAA Home
- This Issue
-
Next Article
Favard theory and fredholm alternative for disconjugate recurrent second order equations
Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect
Unité de Recherche Multifractales et Ondelettes, Faculté des Sciences de Monastir, Université de Monastir, Av. de l'environnement, 5000 Monastir, Tunisie |
We consider a nonlinear Schrödinger equation with a delta-function impurity at the origin of the space domain. We study the asymptotic behavior of the solutions with the theory of infinite dynamical system. We first prove the existence of a global attractor in $H^1_0(-1, 1)$. We also establish that this global attractor is a compact subset of $H^{\frac{3}{2}-\epsilon}(-1, 1)$.
References:
[1] |
J. Ball,
Global attractors for damped semilinear wave equations, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations, vol 10, Courant Lectures Notes in Mathematics, NYU Courant Institute of Mathematical Sciences, New York, 2003.
doi: 10.1090/cln/010. |
[3] |
J.-M. Ghidaglia,
Finite dimensional behavior for the weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré, 5 (1988), 365-405.
|
[4] |
O. Goubet,
Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Applicable Anal., 60 (1996), 99-119.
doi: 10.1080/00036819608840420. |
[5] |
I. Moise, R. Rosa and X. Wang,
Attractors for a non-compact semi-groups via energy equations, Nonlinearity, 11 (1998), 1369-1393.
doi: 10.1088/0951-7715/11/5/012. |
[6] |
C. Sulem and P. L Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. |
[7] |
X. Wang,
An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications, Physica D, 88 (1995), 167-175.
doi: 10.1016/0167-2789(95)00196-B. |
show all references
References:
[1] |
J. Ball,
Global attractors for damped semilinear wave equations, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations, vol 10, Courant Lectures Notes in Mathematics, NYU Courant Institute of Mathematical Sciences, New York, 2003.
doi: 10.1090/cln/010. |
[3] |
J.-M. Ghidaglia,
Finite dimensional behavior for the weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré, 5 (1988), 365-405.
|
[4] |
O. Goubet,
Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Applicable Anal., 60 (1996), 99-119.
doi: 10.1080/00036819608840420. |
[5] |
I. Moise, R. Rosa and X. Wang,
Attractors for a non-compact semi-groups via energy equations, Nonlinearity, 11 (1998), 1369-1393.
doi: 10.1088/0951-7715/11/5/012. |
[6] |
C. Sulem and P. L Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. |
[7] |
X. Wang,
An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications, Physica D, 88 (1995), 167-175.
doi: 10.1016/0167-2789(95)00196-B. |
[1] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[2] |
Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121 |
[3] |
Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393 |
[4] |
Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639 |
[5] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[6] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations and Control Theory, 2022, 11 (2) : 559-581. doi: 10.3934/eect.2021013 |
[7] |
Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206 |
[8] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 |
[9] |
Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189 |
[10] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[11] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
[12] |
Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1 |
[13] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[14] |
Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 |
[15] |
Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695 |
[16] |
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305 |
[17] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[18] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 |
[19] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 |
[20] |
S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]