\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider a nonlinear Schrödinger equation with a delta-function impurity at the origin of the space domain. We study the asymptotic behavior of the solutions with the theory of infinite dynamical system. We first prove the existence of a global attractor in $H^1_0(-1, 1)$. We also establish that this global attractor is a compact subset of $H^{\frac{3}{2}-\epsilon}(-1, 1)$.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Ball, Global attractors for damped semilinear wave equations, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.
    [2] T. Cazenave, Semilinear Schrödinger Equations, vol 10, Courant Lectures Notes in Mathematics, NYU Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.
    [3] J.-M. Ghidaglia, Finite dimensional behavior for the weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré, 5 (1988), 365-405. 
    [4] O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Applicable Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.
    [5] I. MoiseR. Rosa and X. Wang, Attractors for a non-compact semi-groups via energy equations, Nonlinearity, 11 (1998), 1369-1393.  doi: 10.1088/0951-7715/11/5/012.
    [6] C. Sulem and P. L Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.
    [7] X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.
  • 加载中
SHARE

Article Metrics

HTML views(1166) PDF downloads(199) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return