In this paper, we investigate the Hardy-Sobolev type integral systems (1) with Dirichlet boundary conditions in a half space $\mathbb{R}_+^n$. We use the method of moving planes in integral forms introduced by Chen, Li and Ou [
Citation: |
[1] | G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in ${\mathbb{R}^N}$ and $\mathbb{R}_N^ + $ through the method of moving plane, Comm. Partial Differential Equations, 22 (1997), 1671-1690. doi: 10.1080/03605309708821315. |
[2] | L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Disc. Cont. Dyn. Sys., 33 (2013), 3937-3955. doi: 10.3934/dcds.2013.33.3937. |
[3] | L. Cao and Z. Dai, A Liouville-type theorem for an integral equations system on a half-space $\mathbb{R}_n^ + $, J. Math. Anal. Appl., 389 (2012), 1365-1373. doi: 10.1016/j.jmaa.2012.01.015. |
[4] | G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3. |
[5] | W. Chen and Y. Fang, Higher order or fractional order Hardy-Sobolev type equations, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 9 (2014), 317-349. |
[6] | L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304. |
[7] | D. Cao and Y. Li, Results on positive solutions of elliptic equations with a critical HardySobolev operator, Methods Appl. Anal., 15 (2008), 81-96. doi: 10.4310/MAA.2008.v15.n1.a8. |
[8] | L. Chen, Z. Liu and G. Lu, Symmetry and regularity of solutions to the weighted HardySobolev type system, Adv. Nonlinear Stud. , 16 (2016), no. 1, 1-13. doi: 10.1515/ans-2015-5005. |
[9] | W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. and Dyn. Sys. , Vol. 4,2010. |
[10] | W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8. |
[11] | W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 4 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167. |
[12] | W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. |
[13] | W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Patial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445. |
[14] | W. Dai, Z. Liu and G. Lu, Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Analysis, (2016). doi: 10.1007/s11118-016-9594-6. |
[15] | Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018. |
[16] | Y. Fang and J. Zhang, Nonexistece of positive solution for an integral equation on a half-space $\mathbb{R}_N^ + $, Comm. Pure Appl. Anal., 2 (2013), 663-678. doi: 10.3934/cpaa.2013.12.663. |
[17] | Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in ${\mathbb{R}^N}$ and in $\mathbb{R}_N^ + $, Proc. Roy. Edinburgh Sect. A., 138 (2008), 339-359. doi: 10.1017/S0308210506000394. |
[18] | B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^N}$, Mathematical Analysis and Applications, vol. 7a of the book series Advances in Mathematics, Academic Press, New York, 1981. |
[19] | B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Patial Differential Equations, 6 (1981), 883-901. doi: 10.1080/03605308108820196. |
[20] | C. Jin and C. Li, Symmetry of solution to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. |
[21] | E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374. doi: 10.2307/2007032. |
[22] | Z. Liu and W. Dai, A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Advanced Nonlinear Studies, 15 (2015), 117-134. doi: 10.1515/ans-2015-0106. |
[23] | C. Li, A degree theory approach for the shooting method, preprint, arXiv: 1301.6232. |
[24] | C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231. doi: 10.1007/s002220050023. |
[25] | Y. Lei and C. Li, Decay properties of the Hardy-Littlewood-Sobolev systems of the LaneEmden type, preprint, arXiv: 1302.5567. |
[26] | Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277. |
[27] | Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. and PDEs, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7. |
[28] | D. Li, P. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Complex Variables and Elliptic Equations, 59 (2014), 1436-1450. doi: 10.1080/17476933.2013.854346. |
[29] | G. Lu, P. Wang and J. Zhu, Liouville-type theorems and decay estimates for solutions to higher order elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 653-665. doi: 10.1016/j.anihpc.2012.02.004. |
[30] | G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. and PDEs, 42 (2011), 563-577. doi: 10.1007/s00526-011-0398-7. |
[31] | G. Lu and J. Zhu, Axial symmetry and regularity of solutions to an integral equations in a half-space, Pacific J. Math., 253 (2011), 455-473. doi: 10.2140/pjm.2011.253.455. |
[32] | G. Lu and J. Zhu, Liouville-type theorems for fully nonlinear elliptic equations and systems in half spaces, Advanced Nonlinear Studies, 13 (2013), 979-1001. doi: 10.1515/ans-2013-0413. |
[33] | G. Lu and J. Zhu, The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differ. Eqs, 258 (2015), 2054-2079. doi: 10.1016/j.jde.2014.11.022. |
[34] | L. Ma and D. Chen, A Liouville type theorem for an intergral system, Comm. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855. |
[35] | W. Reichel and T. Weth, A prior bounds and a liouville theorem on a half-space for higherorder elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827. doi: 10.1007/s00209-008-0352-3. |
[36] | J. Xu, H. Wu and Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307-319. doi: 10.1016/j.jmaa.2015.02.043. |
[37] | J. Villavert, Shooting with degree theory: Analysis of some weighted poly-harmonic systems, J. Differ. Eqs., 257 (2014), 1148-1167. doi: 10.1016/j.jde.2014.05.003. |
[38] | R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrodinger system with Navier boundary conditions in a half space, Comm. Pure Appl. Anal., 3 (2014), 977-990. doi: 10.3934/cpaa.2014.13.977. |
[39] | Z. Zhang, Nonexistence of positive solutions of an integral system with weights, Adv. Difference Equ. , 61 (2011), 10 pp. doi: 10.1186/1687-1847-2011-61. |
[40] | Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391 (2012), 209-222. doi: 10.1016/j.jmaa.2012.02.016. |