\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space

  • * Corresponding author: Zhao Liu

    * Corresponding author: Zhao Liu 

The first two authors were partly supported by the NNSF of China (No. 11371056), the first author was also supported by the NNSF of China (No. 11501021), the third author was partly supported by a US NSF grant and a Simons Fellowship from the Simons Foundation

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate the Hardy-Sobolev type integral systems (1) with Dirichlet boundary conditions in a half space $\mathbb{R}_+^n$. We use the method of moving planes in integral forms introduced by Chen, Li and Ou [12] to prove that each pair of integrable positive solutions $(u, v)$ of the above integral system is rotationally symmetric about $x_n$-axis in both subcritical and critical cases $\frac{n-t}{p+1}+\frac{n-s}{q+1}\geq n-2m$ (Theorem 1.1). We also derive the non-existence of nontrivial nonnegative solutions with finite energy in the subcritical case (Theorem 1.2). By slightly modifying our arguments for studying the integral system, we can prove by a similar but simpler way that the same conclusions also hold for a single integral equation of Hardy-Sobolev type in both critical and subcritical cases (Theorem 1.3).

    Mathematics Subject Classification: Primary: 35J48; Secondary: 35B06, 45G15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in ${\mathbb{R}^N}$ and $\mathbb{R}_N^ + $ through the method of moving plane, Comm. Partial Differential Equations, 22 (1997), 1671-1690.  doi: 10.1080/03605309708821315.
    [2] L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Disc. Cont. Dyn. Sys., 33 (2013), 3937-3955.  doi: 10.3934/dcds.2013.33.3937.
    [3] L. Cao and Z. Dai, A Liouville-type theorem for an integral equations system on a half-space $\mathbb{R}_n^ + $, J. Math. Anal. Appl., 389 (2012), 1365-1373.  doi: 10.1016/j.jmaa.2012.01.015.
    [4] G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.
    [5] W. Chen and Y. Fang, Higher order or fractional order Hardy-Sobolev type equations, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 9 (2014), 317-349. 
    [6] L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.
    [7] D. Cao and Y. Li, Results on positive solutions of elliptic equations with a critical HardySobolev operator, Methods Appl. Anal., 15 (2008), 81-96.  doi: 10.4310/MAA.2008.v15.n1.a8.
    [8] L. Chen, Z. Liu and G. Lu, Symmetry and regularity of solutions to the weighted HardySobolev type system, Adv. Nonlinear Stud. , 16 (2016), no. 1, 1-13. doi: 10.1515/ans-2015-5005.
    [9] W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. and Dyn. Sys. , Vol. 4,2010.
    [10] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.
    [11] W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 4 (2009), 1167-1184.  doi: 10.3934/dcds.2009.24.1167.
    [12] W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.
    [13] W. ChenC. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Patial Differential Equations, 30 (2005), 59-65.  doi: 10.1081/PDE-200044445.
    [14] W. Dai, Z. Liu and G. Lu, Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Analysis, (2016). doi: 10.1007/s11118-016-9594-6.
    [15] Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.
    [16] Y. Fang and J. Zhang, Nonexistece of positive solution for an integral equation on a half-space $\mathbb{R}_N^ + $, Comm. Pure Appl. Anal., 2 (2013), 663-678.  doi: 10.3934/cpaa.2013.12.663.
    [17] Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in ${\mathbb{R}^N}$ and in $\mathbb{R}_N^ + $, Proc. Roy. Edinburgh Sect. A., 138 (2008), 339-359.  doi: 10.1017/S0308210506000394.
    [18] B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^N}$, Mathematical Analysis and Applications, vol. 7a of the book series Advances in Mathematics, Academic Press, New York, 1981.
    [19] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Patial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.
    [20] C. Jin and C. Li, Symmetry of solution to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. 
    [21] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.
    [22] Z. Liu and W. Dai, A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Advanced Nonlinear Studies, 15 (2015), 117-134.  doi: 10.1515/ans-2015-0106.
    [23] C. Li, A degree theory approach for the shooting method, preprint, arXiv: 1301.6232.
    [24] C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.  doi: 10.1007/s002220050023.
    [25] Y. Lei and C. Li, Decay properties of the Hardy-Littlewood-Sobolev systems of the LaneEmden type, preprint, arXiv: 1302.5567.
    [26] Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.  doi: 10.3934/dcds.2016.36.3277.
    [27] Y. LeiC. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. and PDEs, 45 (2012), 43-61.  doi: 10.1007/s00526-011-0450-7.
    [28] D. LiP. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Complex Variables and Elliptic Equations, 59 (2014), 1436-1450.  doi: 10.1080/17476933.2013.854346.
    [29] G. LuP. Wang and J. Zhu, Liouville-type theorems and decay estimates for solutions to higher order elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 653-665.  doi: 10.1016/j.anihpc.2012.02.004.
    [30] G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. and PDEs, 42 (2011), 563-577.  doi: 10.1007/s00526-011-0398-7.
    [31] G. Lu and J. Zhu, Axial symmetry and regularity of solutions to an integral equations in a half-space, Pacific J. Math., 253 (2011), 455-473.  doi: 10.2140/pjm.2011.253.455.
    [32] G. Lu and J. Zhu, Liouville-type theorems for fully nonlinear elliptic equations and systems in half spaces, Advanced Nonlinear Studies, 13 (2013), 979-1001.  doi: 10.1515/ans-2013-0413.
    [33] G. Lu and J. Zhu, The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differ. Eqs, 258 (2015), 2054-2079.  doi: 10.1016/j.jde.2014.11.022.
    [34] L. Ma and D. Chen, A Liouville type theorem for an intergral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.
    [35] W. Reichel and T. Weth, A prior bounds and a liouville theorem on a half-space for higherorder elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.  doi: 10.1007/s00209-008-0352-3.
    [36] J. XuH. Wu and Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307-319.  doi: 10.1016/j.jmaa.2015.02.043.
    [37] J. Villavert, Shooting with degree theory: Analysis of some weighted poly-harmonic systems, J. Differ. Eqs., 257 (2014), 1148-1167.  doi: 10.1016/j.jde.2014.05.003.
    [38] R. ZhuoF. Li and B. Lv, Liouville type theorems for Schrodinger system with Navier boundary conditions in a half space, Comm. Pure Appl. Anal., 3 (2014), 977-990.  doi: 10.3934/cpaa.2014.13.977.
    [39] Z. Zhang, Nonexistence of positive solutions of an integral system with weights, Adv. Difference Equ. , 61 (2011), 10 pp. doi: 10.1186/1687-1847-2011-61.
    [40] Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391 (2012), 209-222.  doi: 10.1016/j.jmaa.2012.02.016.
  • 加载中
SHARE

Article Metrics

HTML views(1618) PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return