• Previous Article
    Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat
  • CPAA Home
  • This Issue
  • Next Article
    Robin problems with indefinite linear part and competition phenomena
July  2017, 16(4): 1315-1330. doi: 10.3934/cpaa.2017064

Non-topological solutions in a generalized Chern-Simons model on torus

National Institute for Mathematical Sciences, Academic exchanges, KT Daeduk 2 Research Center, 70 Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, 34047, Republic of Korea

* Corresponding author

Received  August 2016 Revised  February 2017 Published  April 2017

We consider a quasi-linear elliptic equation with Dirac source terms arising in a generalized self-dual Chern-Simons-Higgs gauge theory. In this paper, we study doubly periodic vortices with arbitrary vortex configuration. First of all, we show that under doubly periodic condition, there are only two types of solutions, topological and non-topological solutions as the coupling parameter goes to zero. Moreover, we succeed to construct non-topological solution with $k$ bubbles where $k\in\mathbb{N}$ is any given number. To find a solution, we analyze the structure of quasi-linear elliptic equation carefully and apply the method developed in the recent work [16].

Citation: Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064
References:
[1]

J. BurzlaffA. Chakrabarti and D. H. Tchrakian, Generalized self-dual Chern-Simons vortices, Phys. Lett. B, 293 (1992), 127-131.  doi: 10.1016/0370-2693(92)91490-Z.  Google Scholar

[2]

L. A. Caffarelli and Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys., 168 (1995), 321-336.   Google Scholar

[3]

D. Chae and O. Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119-142.  doi: 10.1007/s002200000302.  Google Scholar

[4]

D. Chae and O. Y. Imanuvilov, Non-topological solutions in the generalized self-dual ChernSimons-Higgs theory, Calc. Var. Partial Differential Equations, 16 (2003), 47-61.  doi: 10.1007/s005260100141.  Google Scholar

[5]

H. ChanC. C. Fu and C. S. Lin, Non-topological multivortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys., 231 (2002), 189-221.  doi: 10.1007/s00220-002-0691-6.  Google Scholar

[6]

K. Choe, Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory, J. Math. Phys., 46 (2005), 012305, 22 pp.  doi: 10.1063/1.1834694.  Google Scholar

[7]

K. Choe, Asymptotic behavior of condensate solutions in the Chern-Simons-Higgs theory, J. Math. Phys., 48 (2007), 48 (2007), 103501, 17 pp.  doi: 10.1063/1.2785821.  Google Scholar

[8]

K. Choe and N. Kim, Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. H. Poincaré Anal. Non Linaire, 25 (2008), 313-338.  doi: 10.1016/j.anihpc.2006.11.012.  Google Scholar

[9]

W. DingJ. JostJ. LiX. Peng and G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials, Comm. Math. Phys., 217 (2001), 383-407.  doi: 10.1007/s002200100377.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 224 second ed. , Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

X. Han, Existence of doubly periodic vortices in a generalized Chern-Simons model, Nonlinear Anal. Real World Appl., 16 (2014), 90-102.  doi: 10.1016/j.nonrwa.2013.09.009.  Google Scholar

[12]

J. HongY. Kim and P. Y. Pac, Multi-vortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230-2233.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[13]

R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[14]

A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980.  Google Scholar

[15]

C. S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys., 297 (2010), 733-758.  doi: 10.1007/s00220-010-1056-1.  Google Scholar

[16]

C. S. Lin and S. Yan, Existence of Bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353-392.  doi: 10.1007/s00205-012-0575-7.  Google Scholar

[17]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195.  doi: 10.1007/s002050050127.  Google Scholar

[18]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations, 9 (1999), 31-94.  doi: 10.1007/s005260050132.  Google Scholar

[19]

J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincare Anal. Non Lineaire, 12 (1995), 75-97.   Google Scholar

[20]

G. 't Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B, 153 (1979), 141-160.  doi: 10.1016/0550-3213(79)90465-6.  Google Scholar

[21]

G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796.  doi: 10.1063/1.531601.  Google Scholar

[22]

G. Tarantello, Selfdual Gauge Field Vortices. An Analytical Approach, Progress in Nonlinear Differential Equations and their Applications. Birkhauser Boston, Inc. , Boston, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[23]

D. H. Tchrakian and Y. Yang, The existence of generalised self-dual Chern-Simons vortices, Lett. Math. Phys., 36 (1996), 403-413.  doi: 10.1007/BF00714405.  Google Scholar

[24]

Y. Yang, Chern-Simons solitons and a nonlinear elliptic equation, Helv. Phys. Acta, 71 (1998), 573-585.   Google Scholar

[25]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

show all references

References:
[1]

J. BurzlaffA. Chakrabarti and D. H. Tchrakian, Generalized self-dual Chern-Simons vortices, Phys. Lett. B, 293 (1992), 127-131.  doi: 10.1016/0370-2693(92)91490-Z.  Google Scholar

[2]

L. A. Caffarelli and Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys., 168 (1995), 321-336.   Google Scholar

[3]

D. Chae and O. Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119-142.  doi: 10.1007/s002200000302.  Google Scholar

[4]

D. Chae and O. Y. Imanuvilov, Non-topological solutions in the generalized self-dual ChernSimons-Higgs theory, Calc. Var. Partial Differential Equations, 16 (2003), 47-61.  doi: 10.1007/s005260100141.  Google Scholar

[5]

H. ChanC. C. Fu and C. S. Lin, Non-topological multivortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys., 231 (2002), 189-221.  doi: 10.1007/s00220-002-0691-6.  Google Scholar

[6]

K. Choe, Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory, J. Math. Phys., 46 (2005), 012305, 22 pp.  doi: 10.1063/1.1834694.  Google Scholar

[7]

K. Choe, Asymptotic behavior of condensate solutions in the Chern-Simons-Higgs theory, J. Math. Phys., 48 (2007), 48 (2007), 103501, 17 pp.  doi: 10.1063/1.2785821.  Google Scholar

[8]

K. Choe and N. Kim, Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. H. Poincaré Anal. Non Linaire, 25 (2008), 313-338.  doi: 10.1016/j.anihpc.2006.11.012.  Google Scholar

[9]

W. DingJ. JostJ. LiX. Peng and G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials, Comm. Math. Phys., 217 (2001), 383-407.  doi: 10.1007/s002200100377.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 224 second ed. , Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

X. Han, Existence of doubly periodic vortices in a generalized Chern-Simons model, Nonlinear Anal. Real World Appl., 16 (2014), 90-102.  doi: 10.1016/j.nonrwa.2013.09.009.  Google Scholar

[12]

J. HongY. Kim and P. Y. Pac, Multi-vortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230-2233.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[13]

R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[14]

A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980.  Google Scholar

[15]

C. S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys., 297 (2010), 733-758.  doi: 10.1007/s00220-010-1056-1.  Google Scholar

[16]

C. S. Lin and S. Yan, Existence of Bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353-392.  doi: 10.1007/s00205-012-0575-7.  Google Scholar

[17]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195.  doi: 10.1007/s002050050127.  Google Scholar

[18]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations, 9 (1999), 31-94.  doi: 10.1007/s005260050132.  Google Scholar

[19]

J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincare Anal. Non Lineaire, 12 (1995), 75-97.   Google Scholar

[20]

G. 't Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B, 153 (1979), 141-160.  doi: 10.1016/0550-3213(79)90465-6.  Google Scholar

[21]

G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796.  doi: 10.1063/1.531601.  Google Scholar

[22]

G. Tarantello, Selfdual Gauge Field Vortices. An Analytical Approach, Progress in Nonlinear Differential Equations and their Applications. Birkhauser Boston, Inc. , Boston, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[23]

D. H. Tchrakian and Y. Yang, The existence of generalised self-dual Chern-Simons vortices, Lett. Math. Phys., 36 (1996), 403-413.  doi: 10.1007/BF00714405.  Google Scholar

[24]

Y. Yang, Chern-Simons solitons and a nonlinear elliptic equation, Helv. Phys. Acta, 71 (1998), 573-585.   Google Scholar

[25]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[1]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[2]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[5]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[6]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[7]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[10]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[11]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[12]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[16]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[17]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[18]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[19]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[20]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]