-
Previous Article
A competition model with dynamically allocated toxin production in the unstirred chemostat
- CPAA Home
- This Issue
-
Next Article
Non-topological solutions in a generalized Chern-Simons model on torus
Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat
1. | Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland |
2. | Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland |
3. | Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland |
4. | Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland |
A three-dimensional thermo-visco-elastic system for Kelvin-Voigt type material at small strains is considered. The system involves nonlinear temperature-dependent specific heat relevant in the limit of low temperature range. The existence of a unique global regular solution is proved without small data assumptions. The proof consists of two parts. First the existence of a local in time solution is proved by the Banach successive approximations method. Then a lower bound on temperature and global a priori estimates are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. Such estimates allow to extend the local solution step by step in time. The paper generalizes the results of the previous author's publication in SIAM J. Math. Anal. 45, No. 4 (2013), pp. 1997–2045.
References:
[1] |
O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian). Google Scholar |
[2] |
D. Blanchard and O. Gulbé,
Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252.
|
[3] |
E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15. |
[4] |
Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167. Google Scholar |
[5] |
C. M. Dafermos,
Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.
doi: 10.1137/0513029. |
[6] |
C. M. Dafermos and L. Hsiao,
Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.
doi: 10.1016/0362-546X(82)90058-X. |
[7] |
R. Denk, M. Hieber and J. Prüss,
Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[8] |
C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005.
doi: 10.1201/9781420027365. |
[9] |
M. Fabrizio, D. Giorgi and A. Morro,
A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.
doi: 10.1002/mma.930. |
[10] |
E. Feireisl, H. Petzeltová and E. Rocca,
Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.
doi: 10.1002/mma.1089. |
[11] |
G. Francfort and P. M. Suquet,
Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.
doi: 10.1007/BF00251909. |
[12] |
M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9. |
[13] |
J. A. Gawinecki,
Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.
doi: 10.1002/mma.406. |
[14] |
J. A. Gawinecki and W. M. Zajączkowski,
Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.
|
[15] |
J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear.
doi: 10.3934/cpaa.2016.15.1009. |
[16] |
K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280. Google Scholar |
[17] |
N. V. Krylov,
The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25.
|
[18] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). Google Scholar |
[19] |
A. Miranville and G. Schimperna,
Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.
doi: 10.1007/s00028-005-0187-x. |
[20] |
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967. |
[21] |
I. Pawłlow,
Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365.
|
[22] |
I. Paw low and W. M. Zajączkowski,
Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.
doi: 10.3934/dcdss.2011.4.441. |
[23] |
I. Paw low and W. M. Zajączkowski,
Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.
doi: 10.1137/110859026. |
[24] |
I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46.
doi: 10.4064/dm406-0-1. |
[25] |
R. Rossi and T. Roubíček,
Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.
doi: 10.1016/j.na.2011.01.031. |
[26] |
T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902. |
[27] |
T. Roubíček,
Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.
doi: 10.1090/S0033-569X-09-01094-3. |
[28] |
T. Roubíček,
Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.
doi: 10.1137/080729992. |
[29] |
T. Roubíček,
Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.
doi: 10.1007/s00030-012-0207-9. |
[30] |
Y. Shibata,
Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.
doi: 10.1002/mma.1670181104. |
[31] |
M. Slemrod,
Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.
doi: 10.1007/BF00251248. |
[32] |
V. A. Solonnikov,
Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.
doi: 10.1023/B:JOTH.0000041480.38912.3a. |
[33] |
V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian). |
[34] |
W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985.
doi: 10.1007/978-3-663-13911-9. |
[35] |
S. Y. Yoshikawa, I. Paw low and W. M. Zajączkowski,
A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.
doi: 10.3934/cpaa.2009.8.1093. |
show all references
References:
[1] |
O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian). Google Scholar |
[2] |
D. Blanchard and O. Gulbé,
Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252.
|
[3] |
E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15. |
[4] |
Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167. Google Scholar |
[5] |
C. M. Dafermos,
Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.
doi: 10.1137/0513029. |
[6] |
C. M. Dafermos and L. Hsiao,
Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.
doi: 10.1016/0362-546X(82)90058-X. |
[7] |
R. Denk, M. Hieber and J. Prüss,
Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[8] |
C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005.
doi: 10.1201/9781420027365. |
[9] |
M. Fabrizio, D. Giorgi and A. Morro,
A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.
doi: 10.1002/mma.930. |
[10] |
E. Feireisl, H. Petzeltová and E. Rocca,
Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.
doi: 10.1002/mma.1089. |
[11] |
G. Francfort and P. M. Suquet,
Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.
doi: 10.1007/BF00251909. |
[12] |
M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9. |
[13] |
J. A. Gawinecki,
Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.
doi: 10.1002/mma.406. |
[14] |
J. A. Gawinecki and W. M. Zajączkowski,
Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.
|
[15] |
J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear.
doi: 10.3934/cpaa.2016.15.1009. |
[16] |
K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280. Google Scholar |
[17] |
N. V. Krylov,
The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25.
|
[18] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). Google Scholar |
[19] |
A. Miranville and G. Schimperna,
Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.
doi: 10.1007/s00028-005-0187-x. |
[20] |
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967. |
[21] |
I. Pawłlow,
Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365.
|
[22] |
I. Paw low and W. M. Zajączkowski,
Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.
doi: 10.3934/dcdss.2011.4.441. |
[23] |
I. Paw low and W. M. Zajączkowski,
Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.
doi: 10.1137/110859026. |
[24] |
I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46.
doi: 10.4064/dm406-0-1. |
[25] |
R. Rossi and T. Roubíček,
Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.
doi: 10.1016/j.na.2011.01.031. |
[26] |
T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902. |
[27] |
T. Roubíček,
Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.
doi: 10.1090/S0033-569X-09-01094-3. |
[28] |
T. Roubíček,
Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.
doi: 10.1137/080729992. |
[29] |
T. Roubíček,
Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.
doi: 10.1007/s00030-012-0207-9. |
[30] |
Y. Shibata,
Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.
doi: 10.1002/mma.1670181104. |
[31] |
M. Slemrod,
Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.
doi: 10.1007/BF00251248. |
[32] |
V. A. Solonnikov,
Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.
doi: 10.1023/B:JOTH.0000041480.38912.3a. |
[33] |
V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian). |
[34] |
W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985.
doi: 10.1007/978-3-663-13911-9. |
[35] |
S. Y. Yoshikawa, I. Paw low and W. M. Zajączkowski,
A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.
doi: 10.3934/cpaa.2009.8.1093. |
[1] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[2] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[3] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[4] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[5] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[6] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[7] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[8] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[9] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[10] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[11] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[12] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[13] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[14] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[15] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[16] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[17] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[18] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[19] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[20] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]