
-
Previous Article
Damping to prevent the blow-up of the korteweg-de vries equation
- CPAA Home
- This Issue
-
Next Article
Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property
Minimizers of anisotropic perimeters with cylindrical norms
1. | Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università degli studi di Siena, via Roma 56,53100 Siena, Italy |
2. | International Centre for Theoretical Physics (ICTP), Strada Costiera 11,34151 Trieste, Italy |
3. | Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5,56127 Pisa, Italy |
4. | Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,34136 Trieste, Italy |
We study various regularity properties of minimizers of the $\Phi$–perimeter, where $\Phi$ is a norm. Under suitable assumptions on $\Phi$ and on the dimension of the ambient space, we prove that the boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Hausdorff dimension. Moreover, we show the following anisotropic Bernstein-type result: any entire cartesian minimizer is the subgraph of a monotone function depending only on one variable.
References:
[1] |
G. Alberti, G. Bouchitté and G. Dal Maso,
The calibration method for the Mumford-Shah functional and free-discontinuity problems, Calc. Var. Partial Differential Equations, 16 (2003), 299-333.
doi: 10.1007/s005260100152. |
[2] |
F. Almgren Jr., R. Schoen and L. Simon,
Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals, Acta Math., 139 (1977), 217-265.
doi: 10.1007/BF02392238. |
[3] |
F. Almgren and J. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
|
[4] |
F. Almgren, J. Taylor and L. Wang,
Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[5] |
M. Amar and G. Bellettini,
A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91-133.
|
[6] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000. |
[7] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅰ: first variation and global L∞-regularity, Arch. Ration. Mech. Anal., 157 (2001), 165-191.
doi: 10.1007/s002050010127. |
[8] |
G. Bellettini, V. Caselles, A. Chambolle and M. Novaga,
Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal., 179 (2006), 109-152.
doi: 10.1007/s00205-005-0387-0. |
[9] |
G. Bellettini, M. Paolini and S. Venturini,
Some results on surface measures in calculus of variations, Ann. Mat. Pura Appl., 170 (1996), 329-357.
doi: 10.1007/BF01758994. |
[10] |
E. Bombieri,
Regularity theory for almost minimal currents, Arch. Ration Mech. Anal., 78 (1982), 99-130.
doi: 10.1007/BF00250836. |
[11] |
E. Bombieri, E. De Giorgi and E. Giusti,
Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.
doi: 10.1007/BF01404309. |
[12] |
J. W. Cahn and D. W. Hoffman,
A vector thermodynamics for anisotropic surfaces. Ⅰ. Fundamentals and applications to plane surface junctions, Surface Sci., 31 (1972), 368-388.
|
[13] |
J. W. Cahn and D. W. Hoffman,
A vector thermodynamics for anisotropic surfaces. Ⅱ. Curved and facetted surfaces, Acta Metall., 22 (1974), 1205-1214.
|
[14] |
V. Caselles, A. Chambolle and M. Novaga,
Regularity for solutions of the total variation denoising problem, Rev. Mat. Iber., 27 (2011), 233-252.
doi: 10.4171/RMI/634. |
[15] |
V. Caselles, R. Kimmel, G. Sapiro and C. Sbert,
Minimal surfaces based object segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997), 394-398.
doi: 10.1007/s002110050294. |
[16] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011320.81911.38. |
[17] |
A. Chambolle, V. Caselles, M. Novaga, D. Cremers and T. Pock,
An introduction to total variation for image analysis. Theoretical foundations and numerical methods for sparse recovery, Radon Ser. Comput. Appl. Math., 9 (2010), 263-340.
doi: 10.1515/9783110226157.263. |
[18] |
G. Dal Maso,
Integral representation on BV (Ω) of Γ-limits of variational integrals, Manuscripta Math., 30 (1980), 387-416.
doi: 10.1007/BF01301259. |
[19] |
H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc. , 1969. |
[20] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[21] |
M. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, The Clarendon Press, Oxford University Press, New York, 1993. |
[22] |
R. Jerrard, A. Moradifam and A. Nachman, Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math. , to appear.
doi: 10.1515/crelle-2014-0151. |
[23] |
H. Jenkins,
On two-dimensional variational problems in parametric form, Arch. Ration. Mech. Anal., 8 (1961), 181-206.
doi: 10.1007/BF00277437. |
[24] |
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: an Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics no. 135, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139108133.![]() ![]() ![]() |
[25] |
J. M. Mazón,
The Euler-Lagrange equation for the anisotropic least gradient problem, Nonlinear Anal. Real World Appl., 31 (2016), 452-472.
doi: 10.1016/j.nonrwa.2016.02.009. |
[26] |
G. Mercier, Curve-and-Surface Evolutions for Image Processing, PhD Thesis, École Polytechnique, 2015. |
[27] |
M. Miranda,
Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Sc. Norm. Super. Pisa, 18 (1964), 515-542.
|
[28] |
J. Moll,
The anisotropic total variation flow, Math. Ann., 332 (2005), 177-218.
doi: 10.1007/s00208-004-0624-0. |
[29] |
F. Morgan,
The cone over the Clifford torus in $\mathbb{R}^4$ is Φ-minimizing, Math. Ann., 289 (1991), 341-354.
doi: 10.1007/BF01446576. |
[30] |
R. Neumayer,
A strong form of the quantitative Wulff inequality, SIAM J. Math. Anal., 48 (2016), 1727-1772.
doi: 10.1137/15M1013675. |
[31] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[32] |
M. Novaga and E. Paolini,
Regularity results for boundaries in $\mathbb{R}^2$ with prescribed anisotropic curvature, Ann. Mat. Pura Appl., 184 (2005), 239-261.
doi: 10.1007/s10231-004-0112-x. |
[33] |
P. Overath and H. von der Mosel,
On minimal immersions in Finsler space, Ann. Global Anal. Geom., 48 (2015), 397-422.
doi: 10.1007/s10455-015-9476-y. |
[34] |
L. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
|
[35] |
L. Simon,
On some extensions of Bernstein's theorem, Math. Z., 154 (1977), 265-273.
doi: 10.1007/BF01214329. |
[36] |
I. Tamanini,
Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math., 334 (1982), 27-39.
doi: 10.1515/crll.1982.334.27. |
[37] |
J. Taylor,
Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
doi: 10.1090/S0002-9904-1978-14499-1. |
[38] |
J. Taylor,
Complete catalog of minimizing embedded crystalline cones, Proc. Sympos. Pure Math., 44 (1984), 379-403.
doi: 10.1090/pspum/044/840288. |
[39] |
J. Taylor and J. Cahn,
Catalog of saddle shaped surfaces in crystals, Acta Metall., 34 (1986), 1-12.
|
show all references
References:
[1] |
G. Alberti, G. Bouchitté and G. Dal Maso,
The calibration method for the Mumford-Shah functional and free-discontinuity problems, Calc. Var. Partial Differential Equations, 16 (2003), 299-333.
doi: 10.1007/s005260100152. |
[2] |
F. Almgren Jr., R. Schoen and L. Simon,
Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals, Acta Math., 139 (1977), 217-265.
doi: 10.1007/BF02392238. |
[3] |
F. Almgren and J. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
|
[4] |
F. Almgren, J. Taylor and L. Wang,
Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[5] |
M. Amar and G. Bellettini,
A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91-133.
|
[6] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000. |
[7] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅰ: first variation and global L∞-regularity, Arch. Ration. Mech. Anal., 157 (2001), 165-191.
doi: 10.1007/s002050010127. |
[8] |
G. Bellettini, V. Caselles, A. Chambolle and M. Novaga,
Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal., 179 (2006), 109-152.
doi: 10.1007/s00205-005-0387-0. |
[9] |
G. Bellettini, M. Paolini and S. Venturini,
Some results on surface measures in calculus of variations, Ann. Mat. Pura Appl., 170 (1996), 329-357.
doi: 10.1007/BF01758994. |
[10] |
E. Bombieri,
Regularity theory for almost minimal currents, Arch. Ration Mech. Anal., 78 (1982), 99-130.
doi: 10.1007/BF00250836. |
[11] |
E. Bombieri, E. De Giorgi and E. Giusti,
Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.
doi: 10.1007/BF01404309. |
[12] |
J. W. Cahn and D. W. Hoffman,
A vector thermodynamics for anisotropic surfaces. Ⅰ. Fundamentals and applications to plane surface junctions, Surface Sci., 31 (1972), 368-388.
|
[13] |
J. W. Cahn and D. W. Hoffman,
A vector thermodynamics for anisotropic surfaces. Ⅱ. Curved and facetted surfaces, Acta Metall., 22 (1974), 1205-1214.
|
[14] |
V. Caselles, A. Chambolle and M. Novaga,
Regularity for solutions of the total variation denoising problem, Rev. Mat. Iber., 27 (2011), 233-252.
doi: 10.4171/RMI/634. |
[15] |
V. Caselles, R. Kimmel, G. Sapiro and C. Sbert,
Minimal surfaces based object segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997), 394-398.
doi: 10.1007/s002110050294. |
[16] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011320.81911.38. |
[17] |
A. Chambolle, V. Caselles, M. Novaga, D. Cremers and T. Pock,
An introduction to total variation for image analysis. Theoretical foundations and numerical methods for sparse recovery, Radon Ser. Comput. Appl. Math., 9 (2010), 263-340.
doi: 10.1515/9783110226157.263. |
[18] |
G. Dal Maso,
Integral representation on BV (Ω) of Γ-limits of variational integrals, Manuscripta Math., 30 (1980), 387-416.
doi: 10.1007/BF01301259. |
[19] |
H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc. , 1969. |
[20] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[21] |
M. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, The Clarendon Press, Oxford University Press, New York, 1993. |
[22] |
R. Jerrard, A. Moradifam and A. Nachman, Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math. , to appear.
doi: 10.1515/crelle-2014-0151. |
[23] |
H. Jenkins,
On two-dimensional variational problems in parametric form, Arch. Ration. Mech. Anal., 8 (1961), 181-206.
doi: 10.1007/BF00277437. |
[24] |
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: an Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics no. 135, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139108133.![]() ![]() ![]() |
[25] |
J. M. Mazón,
The Euler-Lagrange equation for the anisotropic least gradient problem, Nonlinear Anal. Real World Appl., 31 (2016), 452-472.
doi: 10.1016/j.nonrwa.2016.02.009. |
[26] |
G. Mercier, Curve-and-Surface Evolutions for Image Processing, PhD Thesis, École Polytechnique, 2015. |
[27] |
M. Miranda,
Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Sc. Norm. Super. Pisa, 18 (1964), 515-542.
|
[28] |
J. Moll,
The anisotropic total variation flow, Math. Ann., 332 (2005), 177-218.
doi: 10.1007/s00208-004-0624-0. |
[29] |
F. Morgan,
The cone over the Clifford torus in $\mathbb{R}^4$ is Φ-minimizing, Math. Ann., 289 (1991), 341-354.
doi: 10.1007/BF01446576. |
[30] |
R. Neumayer,
A strong form of the quantitative Wulff inequality, SIAM J. Math. Anal., 48 (2016), 1727-1772.
doi: 10.1137/15M1013675. |
[31] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[32] |
M. Novaga and E. Paolini,
Regularity results for boundaries in $\mathbb{R}^2$ with prescribed anisotropic curvature, Ann. Mat. Pura Appl., 184 (2005), 239-261.
doi: 10.1007/s10231-004-0112-x. |
[33] |
P. Overath and H. von der Mosel,
On minimal immersions in Finsler space, Ann. Global Anal. Geom., 48 (2015), 397-422.
doi: 10.1007/s10455-015-9476-y. |
[34] |
L. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
|
[35] |
L. Simon,
On some extensions of Bernstein's theorem, Math. Z., 154 (1977), 265-273.
doi: 10.1007/BF01214329. |
[36] |
I. Tamanini,
Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math., 334 (1982), 27-39.
doi: 10.1515/crll.1982.334.27. |
[37] |
J. Taylor,
Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
doi: 10.1090/S0002-9904-1978-14499-1. |
[38] |
J. Taylor,
Complete catalog of minimizing embedded crystalline cones, Proc. Sympos. Pure Math., 44 (1984), 379-403.
doi: 10.1090/pspum/044/840288. |
[39] |
J. Taylor and J. Cahn,
Catalog of saddle shaped surfaces in crystals, Acta Metall., 34 (1986), 1-12.
|





[1] |
José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178 |
[2] |
Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591 |
[3] |
Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301 |
[4] |
Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103 |
[5] |
Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems and Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361 |
[6] |
Nikolai Edeko. On the isomorphism problem for non-minimal transformations with discrete spectrum. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6001-6021. doi: 10.3934/dcds.2019262 |
[7] |
Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 |
[8] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[9] |
Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6877-6912. doi: 10.3934/dcds.2019236 |
[10] |
Rafael López. Plateau-rayleigh instability of singular minimal surfaces. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022086 |
[11] |
Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114 |
[12] |
Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763 |
[13] |
Ronald A. Knight. Compact minimal sets in continuous recurrent flows. Conference Publications, 1998, 1998 (Special) : 397-407. doi: 10.3934/proc.1998.1998.397 |
[14] |
Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629 |
[15] |
Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349 |
[16] |
Daniel Glasscock, Andreas Koutsogiannis, Florian Karl Richter. Multiplicative combinatorial properties of return time sets in minimal dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5891-5921. doi: 10.3934/dcds.2019258 |
[17] |
Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231 |
[18] |
Silvère Gangloff. Characterizing entropy dimensions of minimal mutidimensional subshifts of finite type. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 931-988. doi: 10.3934/dcds.2021143 |
[19] |
Brittany Froese Hamfeldt, Jacob Lesniewski. A convergent finite difference method for computing minimal Lagrangian graphs. Communications on Pure and Applied Analysis, 2022, 21 (2) : 393-418. doi: 10.3934/cpaa.2021182 |
[20] |
Gernot Greschonig. Regularity of topological cocycles of a class of non-isometric minimal homeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4305-4321. doi: 10.3934/dcds.2013.33.4305 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]