We study various regularity properties of minimizers of the $\Phi$–perimeter, where $\Phi$ is a norm. Under suitable assumptions on $\Phi$ and on the dimension of the ambient space, we prove that the boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Hausdorff dimension. Moreover, we show the following anisotropic Bernstein-type result: any entire cartesian minimizer is the subgraph of a monotone function depending only on one variable.
Citation: |
[1] | G. Alberti, G. Bouchitté and G. Dal Maso, The calibration method for the Mumford-Shah functional and free-discontinuity problems, Calc. Var. Partial Differential Equations, 16 (2003), 299-333. doi: 10.1007/s005260100152. |
[2] | F. Almgren Jr., R. Schoen and L. Simon, Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals, Acta Math., 139 (1977), 217-265. doi: 10.1007/BF02392238. |
[3] | F. Almgren and J. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22. |
[4] | F. Almgren, J. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438. doi: 10.1137/0331020. |
[5] | M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91-133. |
[6] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000. |
[7] | G. Bellettini, M. Novaga and M. Paolini, On a crystalline variational problem, part Ⅰ: first variation and global L∞-regularity, Arch. Ration. Mech. Anal., 157 (2001), 165-191. doi: 10.1007/s002050010127. |
[8] | G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal., 179 (2006), 109-152. doi: 10.1007/s00205-005-0387-0. |
[9] | G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in calculus of variations, Ann. Mat. Pura Appl., 170 (1996), 329-357. doi: 10.1007/BF01758994. |
[10] | E. Bombieri, Regularity theory for almost minimal currents, Arch. Ration Mech. Anal., 78 (1982), 99-130. doi: 10.1007/BF00250836. |
[11] | E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268. doi: 10.1007/BF01404309. |
[12] | J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces. Ⅰ. Fundamentals and applications to plane surface junctions, Surface Sci., 31 (1972), 368-388. |
[13] | J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces. Ⅱ. Curved and facetted surfaces, Acta Metall., 22 (1974), 1205-1214. |
[14] | V. Caselles, A. Chambolle and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iber., 27 (2011), 233-252. doi: 10.4171/RMI/634. |
[15] | V. Caselles, R. Kimmel, G. Sapiro and C. Sbert, Minimal surfaces based object segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997), 394-398. doi: 10.1007/s002110050294. |
[16] | A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011320.81911.38. |
[17] | A. Chambolle, V. Caselles, M. Novaga, D. Cremers and T. Pock, An introduction to total variation for image analysis. Theoretical foundations and numerical methods for sparse recovery, Radon Ser. Comput. Appl. Math., 9 (2010), 263-340. doi: 10.1515/9783110226157.263. |
[18] | G. Dal Maso, Integral representation on BV (Ω) of Γ-limits of variational integrals, Manuscripta Math., 30 (1980), 387-416. doi: 10.1007/BF01301259. |
[19] | H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc. , 1969. |
[20] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0. |
[21] | M. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, The Clarendon Press, Oxford University Press, New York, 1993. |
[22] | R. Jerrard, A. Moradifam and A. Nachman, Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math. , to appear. doi: 10.1515/crelle-2014-0151. |
[23] | H. Jenkins, On two-dimensional variational problems in parametric form, Arch. Ration. Mech. Anal., 8 (1961), 181-206. doi: 10.1007/BF00277437. |
[24] | F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: an Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics no. 135, Cambridge University Press, Cambridge, 2012. doi: 10.1017/CBO9781139108133. |
[25] | J. M. Mazón, The Euler-Lagrange equation for the anisotropic least gradient problem, Nonlinear Anal. Real World Appl., 31 (2016), 452-472. doi: 10.1016/j.nonrwa.2016.02.009. |
[26] | G. Mercier, Curve-and-Surface Evolutions for Image Processing, PhD Thesis, École Polytechnique, 2015. |
[27] | M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Sc. Norm. Super. Pisa, 18 (1964), 515-542. |
[28] | J. Moll, The anisotropic total variation flow, Math. Ann., 332 (2005), 177-218. doi: 10.1007/s00208-004-0624-0. |
[29] | F. Morgan, The cone over the Clifford torus in $\mathbb{R}^4$ is Φ-minimizing, Math. Ann., 289 (1991), 341-354. doi: 10.1007/BF01446576. |
[30] | R. Neumayer, A strong form of the quantitative Wulff inequality, SIAM J. Math. Anal., 48 (2016), 1727-1772. doi: 10.1137/15M1013675. |
[31] | M. Novaga and E. Paolini, Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566. doi: 10.1016/S1468-1218(01)00048-7. |
[32] | M. Novaga and E. Paolini, Regularity results for boundaries in $\mathbb{R}^2$ with prescribed anisotropic curvature, Ann. Mat. Pura Appl., 184 (2005), 239-261. doi: 10.1007/s10231-004-0112-x. |
[33] | P. Overath and H. von der Mosel, On minimal immersions in Finsler space, Ann. Global Anal. Geom., 48 (2015), 397-422. doi: 10.1007/s10455-015-9476-y. |
[34] | L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268. |
[35] | L. Simon, On some extensions of Bernstein's theorem, Math. Z., 154 (1977), 265-273. doi: 10.1007/BF01214329. |
[36] | I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math., 334 (1982), 27-39. doi: 10.1515/crll.1982.334.27. |
[37] | J. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588. doi: 10.1090/S0002-9904-1978-14499-1. |
[38] | J. Taylor, Complete catalog of minimizing embedded crystalline cones, Proc. Sympos. Pure Math., 44 (1984), 379-403. doi: 10.1090/pspum/044/840288. |
[39] | J. Taylor and J. Cahn, Catalog of saddle shaped surfaces in crystals, Acta Metall., 34 (1986), 1-12. |
$C_1^{(2)}(0, 0)\cup C_2^{(2)}(l, 0)$ with $l>0$ in Example 2.7(a) and its boundary. The right picture is a slight rotation of the left picture
Union $C$ of $C_1^{(2)}(0, 0)$ and the $(-\pi/2)$-rotation of $C_2^{(2)}(0, 0)$ in Example 2.7(b). Notice that $C_t$ for $t=0$ is not a minimizer of the Euclidean perimeter in $\mathbb{R}^2$; however, this does not affect the minimality of $C$
In case $0 < \gamma\leq l, $ among all sets connecting two components of $E$ the strip parallel to $\xi_1$-axis has the "smallest" $\Phi$-perimeter
"Roof" like cone (left) and its section (right) along $(\partial H_1\cap\partial H_2)^\perp$
Sections of cones when $\lambda_1 < +\infty$ and $\lambda_1=+\infty$