July  2017, 16(4): 1493-1516. doi: 10.3934/cpaa.2017071

Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material

1. 

Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Road, Minhang 200241, Shanghai, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Received  October 2016 Revised  December 2016 Published  April 2017

We consider the physical problem of protecting a thermally conducting body from overheating by thermal barrier coatings on a bounded domain, which has two components with a thin coating surrounding the body (of metallic nature), subject to the Dirichlet boundary condition. The coating is composed of two layers, the pure ceramic part and the mixed part. The latter is assumed to be functionally graded material (FGM) that is meant to make a smooth transition from being metallic to being ceramic. The thermal tensor $A$ is isotropic on the body, and anisotropic on the coating; and the size of thermal tensor may differ significantly in these components. Eigenfunction expansion of the interior temperature function indicates that small eigenvalues of the elliptic operator $u\mapsto -\nabla\cdot \left(A\nabla u\right)$ are desirable for the insulation of the body. Therefore, we are motivated to study the asymptotic behavior of the eigenpairs of the Dirichelt eigenvalue problem, as the thickness of the coating shrinks. Our results greatly generalize those by Rosencrans and Wang [8] where the case of single coating layer is considered. In particular, we find new optimal scaling relationship between the thickness of the coating and its thermal conductivity that guarantees at least the principal eigenvalue is small for any general FGMs.

Citation: Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071
References:
[1]

J. BergerP. MartinV. Mantic and L. Gray, Fundamental solution for steady-state heat transfer in an exponentially graded anisotropic material, Z. angew. Math. Phys., 56 (2005), 293-303.  doi: 10.1007/s00033-004-1131-6.  Google Scholar

[2]

A. Friedman, Reinforcement of the principal eigenvalue of an elliptic operator, Arch. Rational Mech. Anal., 73 (1980), 1-17.  doi: 10.1007/BF00283252.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Third Edition, Springer-Verlag, Berlin, 1998.  Google Scholar

[4]

L. Tartar, An Introduction to the Homogenization Method in Optimal Design, Lecture Notes in Mathematics, 1740, Springer Verlag, 2000. doi: 10.1007/BFb0106742.  Google Scholar

[5]

H. Li, Effective boundary conditions of the heat equation on a body coated by functionally graded material, Discrete Contin. Dyn. Syst., 36 (2016), 1415-1430.  doi: 10.3934/dcds.2016.36.1415.  Google Scholar

[6]

J. LiS. RosencransX. Wang and K. Zhang, Asymptotic Analysis of a Dirichlet problem for the heat equation on a coated body, Proc. Amer. Math. Soc., 137 (2008), 1711-1721.  doi: 10.1090/S0002-9939-08-09766-9.  Google Scholar

[7]

M. Mahamood, T. Akinlabi, M. Shukal and S. Pityana, Functionally Graded Material: An Overview, Proceedings of the World Congress on Engineering, WCE 2012. Google Scholar

[8]

S. Rosencrans and X. Wang, Suppression of the Dirichlet eigenvalues of a coated body, SIAM J. Appl. Math. , 66 (2006), 1895-1916; Corrigendum, SIAM J. Appl. Math. , 68 (2008), 1202. doi: 10.1137/040621181.  Google Scholar

[9]

J. Wessel, Handbook of Advanced Materials: Enabling New Design, J. Wiley, New Jersey, 2004. Google Scholar

[10]

G. ZhangS. RosencransX. Wang and K. Zhang, Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions, Discrete Contin. Dyn. Sys., 25 (2009), 1061-1079.  doi: 10.3934/dcds.2009.25.1061.  Google Scholar

[11]

X. ZhengM. G. ForestR. LiptonR. Zhou and Q. Wang, Exact scaling laws for electrical conducting properties of nematic polymer nano-composite monodomains, Adv. Funct. Math., 15 (2005), 627-638.  doi: 10.1007/s00161-006-0032-7.  Google Scholar

show all references

References:
[1]

J. BergerP. MartinV. Mantic and L. Gray, Fundamental solution for steady-state heat transfer in an exponentially graded anisotropic material, Z. angew. Math. Phys., 56 (2005), 293-303.  doi: 10.1007/s00033-004-1131-6.  Google Scholar

[2]

A. Friedman, Reinforcement of the principal eigenvalue of an elliptic operator, Arch. Rational Mech. Anal., 73 (1980), 1-17.  doi: 10.1007/BF00283252.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Third Edition, Springer-Verlag, Berlin, 1998.  Google Scholar

[4]

L. Tartar, An Introduction to the Homogenization Method in Optimal Design, Lecture Notes in Mathematics, 1740, Springer Verlag, 2000. doi: 10.1007/BFb0106742.  Google Scholar

[5]

H. Li, Effective boundary conditions of the heat equation on a body coated by functionally graded material, Discrete Contin. Dyn. Syst., 36 (2016), 1415-1430.  doi: 10.3934/dcds.2016.36.1415.  Google Scholar

[6]

J. LiS. RosencransX. Wang and K. Zhang, Asymptotic Analysis of a Dirichlet problem for the heat equation on a coated body, Proc. Amer. Math. Soc., 137 (2008), 1711-1721.  doi: 10.1090/S0002-9939-08-09766-9.  Google Scholar

[7]

M. Mahamood, T. Akinlabi, M. Shukal and S. Pityana, Functionally Graded Material: An Overview, Proceedings of the World Congress on Engineering, WCE 2012. Google Scholar

[8]

S. Rosencrans and X. Wang, Suppression of the Dirichlet eigenvalues of a coated body, SIAM J. Appl. Math. , 66 (2006), 1895-1916; Corrigendum, SIAM J. Appl. Math. , 68 (2008), 1202. doi: 10.1137/040621181.  Google Scholar

[9]

J. Wessel, Handbook of Advanced Materials: Enabling New Design, J. Wiley, New Jersey, 2004. Google Scholar

[10]

G. ZhangS. RosencransX. Wang and K. Zhang, Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions, Discrete Contin. Dyn. Sys., 25 (2009), 1061-1079.  doi: 10.3934/dcds.2009.25.1061.  Google Scholar

[11]

X. ZhengM. G. ForestR. LiptonR. Zhou and Q. Wang, Exact scaling laws for electrical conducting properties of nematic polymer nano-composite monodomains, Adv. Funct. Math., 15 (2005), 627-638.  doi: 10.1007/s00161-006-0032-7.  Google Scholar

Figure 1.  $\Omega=\overline\Omega_1\cup \Omega_2$. The coating $\Omega_2$ is uniformly thick with thickness $\delta$
Figure 2.  $\Omega=\overline{\Omega_1}\cup \Omega_2$. The coating $\Omega_2$ is uniformly thick with thickness $\delta$ and the mixed part $\Omega_3$ has thickness $\delta_1\in(0, \delta)$
[1]

Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415

[2]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[3]

Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441

[4]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[5]

Rola Kiwan, Ahmad El Soufi. Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1193-1201. doi: 10.3934/cpaa.2008.7.1193

[6]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[7]

François Alouges, Antonio DeSimone, Luca Heltai, Aline Lefebvre-Lepot, Benoît Merlet. Optimally swimming stokesian robots. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1189-1215. doi: 10.3934/dcdsb.2013.18.1189

[8]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[9]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[10]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[11]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[12]

Kanghui Guo, Demetrio Labate. Optimally sparse 3D approximations using shearlet representations. Electronic Research Announcements, 2010, 17: 125-137. doi: 10.3934/era.2010.17.125

[13]

Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527

[14]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

[15]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[16]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[17]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[18]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[19]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[20]

Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]