September  2017, 16(5): 1517-1530. doi: 10.3934/cpaa.2017072

Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T1Z2 Canada

Received  July 2013 Revised  February 2017 Published  May 2017

Fund Project: The author was partially supported by NSF grants DMS-0900865 and DMS-0901222.

In this paper we consider the cubic Schrödinger equation in two space dimensions on irrational tori. Our main result is an improvement of the Strichartz estimates on irrational tori. Using this estimate we obtain a local well-posedness result in $H^{s}$ for $s>\frac{131}{416} $. We also obtain improved growth bounds for higher order Sobolev norms.

Citation: Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072
References:
[1]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[2]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, International Mathematics Research Notices, 6 (1996), 277-304.  doi: 10.1155/S1073792896000207.  Google Scholar

[3]

J. Bourgain, On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori, Mathematical Aspects of Nonlinear Dispersive Equations. Ann. of Math. Stud., 163 (2007), 1-20.   Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, American Journal of Mathematics, 126 (2004), 569-605.   Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Inventiones mathematicae, 159 (2005), 187-223.  doi: 10.1007/s00222-004-0388-x.  Google Scholar

[6]

F. Catoire and W-M. Wang, Bounds on Sobolev norms for the nonlinear Schrödinger equation on general tori, Communications in Pure and Applied Analysis, 9 (2010), 483-491.  doi: 10.3934/cpaa.2010.9.483.  Google Scholar

[7]

D. De SilvaN. PavlovicG. Staffilani and N. Tzirakis, Global well-posedness for a periodic nonlinear Schrödinger equation in 1-D and 2-D, Discrete and Continuous Dynamical Systems, 19 (2007), 37-65.  doi: 10.3934/dcds.2007.19.37.  Google Scholar

[8]

J. Ginibre, Le probléme de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Inventiones Mathematicae, 37 (1995), 163-187.   Google Scholar

[9]

Z. Guo, T. Oh and Y. Wang, Strichartz estimates for Schödinger equations on irrational tori, arXiv: 1306.4973, (2013). doi: 10.1112/plms/pdu025.  Google Scholar

[10]

Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, arXiv: 1311.2275, 2013. doi: 10.1017/fmp. 2015. 5.  Google Scholar

[11]

M. N. Huxley, Exponential sums and lattice points Ⅲ, Proceedings of the London Mathematical Society, 87 (2003), 591-609.  doi: 10.1112/S0024611503014485.  Google Scholar

[12]

V. Jarník, Über die Gitterpunkte auf konvexen Kurven, Mathematische Zeitschrift, 24 (1926), 500-518.  doi: 10.1007/BF01216795.  Google Scholar

[13]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrodinger Equations on $S^1$, Differential and Integral Equations, 24 (2011), 653-718.   Google Scholar

[14]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations, Discrete and Continuous Dynamical Systems, 32 (2012), 3733-3771.  doi: 10.3934/dcds.2012.32.3733.  Google Scholar

[15]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Mathematical Journal, 86 (1997), 79-107.  doi: 10.1215/S0012-7094-97-08603-8.  Google Scholar

[16]

N. Strunk, Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions J. Evol. Equ. 14 (2014) 829. doi: 10.1007/s00028-014-0240-8.  Google Scholar

[17]

T. Tao, Nonlinear dispersive equations: local and global analysis Amer Mathematical Society 106 (2006). doi: 10.1090/cbms/106.  Google Scholar

[18]

S. Zhong, The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds, Journal of Differential Equations, 245 (2008), 359-376.  doi: 10.1016/j.jde.2008.03.008.  Google Scholar

show all references

References:
[1]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[2]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, International Mathematics Research Notices, 6 (1996), 277-304.  doi: 10.1155/S1073792896000207.  Google Scholar

[3]

J. Bourgain, On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori, Mathematical Aspects of Nonlinear Dispersive Equations. Ann. of Math. Stud., 163 (2007), 1-20.   Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, American Journal of Mathematics, 126 (2004), 569-605.   Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Inventiones mathematicae, 159 (2005), 187-223.  doi: 10.1007/s00222-004-0388-x.  Google Scholar

[6]

F. Catoire and W-M. Wang, Bounds on Sobolev norms for the nonlinear Schrödinger equation on general tori, Communications in Pure and Applied Analysis, 9 (2010), 483-491.  doi: 10.3934/cpaa.2010.9.483.  Google Scholar

[7]

D. De SilvaN. PavlovicG. Staffilani and N. Tzirakis, Global well-posedness for a periodic nonlinear Schrödinger equation in 1-D and 2-D, Discrete and Continuous Dynamical Systems, 19 (2007), 37-65.  doi: 10.3934/dcds.2007.19.37.  Google Scholar

[8]

J. Ginibre, Le probléme de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Inventiones Mathematicae, 37 (1995), 163-187.   Google Scholar

[9]

Z. Guo, T. Oh and Y. Wang, Strichartz estimates for Schödinger equations on irrational tori, arXiv: 1306.4973, (2013). doi: 10.1112/plms/pdu025.  Google Scholar

[10]

Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, arXiv: 1311.2275, 2013. doi: 10.1017/fmp. 2015. 5.  Google Scholar

[11]

M. N. Huxley, Exponential sums and lattice points Ⅲ, Proceedings of the London Mathematical Society, 87 (2003), 591-609.  doi: 10.1112/S0024611503014485.  Google Scholar

[12]

V. Jarník, Über die Gitterpunkte auf konvexen Kurven, Mathematische Zeitschrift, 24 (1926), 500-518.  doi: 10.1007/BF01216795.  Google Scholar

[13]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrodinger Equations on $S^1$, Differential and Integral Equations, 24 (2011), 653-718.   Google Scholar

[14]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations, Discrete and Continuous Dynamical Systems, 32 (2012), 3733-3771.  doi: 10.3934/dcds.2012.32.3733.  Google Scholar

[15]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Mathematical Journal, 86 (1997), 79-107.  doi: 10.1215/S0012-7094-97-08603-8.  Google Scholar

[16]

N. Strunk, Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions J. Evol. Equ. 14 (2014) 829. doi: 10.1007/s00028-014-0240-8.  Google Scholar

[17]

T. Tao, Nonlinear dispersive equations: local and global analysis Amer Mathematical Society 106 (2006). doi: 10.1090/cbms/106.  Google Scholar

[18]

S. Zhong, The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds, Journal of Differential Equations, 245 (2008), 359-376.  doi: 10.1016/j.jde.2008.03.008.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (60)
  • Cited by (3)

Other articles
by authors

[Back to Top]