In this paper, variational methods are used to establish some existence and multiplicity results and provide uniform estimates of extremal values for a class of elliptic equations of the form:
$-Δ u - {{λ}\over{|x|^2}}u = h(x) u^q + μ W(x) u^p,\ \ x∈Ω\backslash\{0\}$
with Dirichlet boundary conditions, where $0∈ Ω\subset\mathbb{R}^N $($N≥q 3 $) be a bounded domain with smooth boundary $\partial Ω $, $μ>0 $ is a parameter, $0 < λ < Λ={{(N-2)^2}\over{4}}$, $0 < q < 1 < p < 2^*-1 $, $h(x)>0 $ and $W(x) $ is a given function with the set $\{x∈ Ω: W(x)>0\} $ of positive measure.
Citation: |
[1] |
A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078.![]() ![]() ![]() |
[2] |
J. P. Aubin and I. Ekeland,
Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.
![]() ![]() |
[3] |
C. O. Alves and A. El Hamidi, Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear Anal., 60 (2005), 611-624.
doi: 10.1016/j.na.2004.09.039.![]() ![]() ![]() |
[4] |
J. García-Azorero, I. Peral and A. Primo, A borderline case in elliptic problems involving weights of Caffarelli-Kohn-Nirenberg type, Nonlinear Anal., 67 (2007), 1878-1894.
doi: 10.1016/j.na.2006.07.046.![]() ![]() ![]() |
[5] |
P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.
doi: 10.2307/1999277.![]() ![]() ![]() |
[6] |
H. Brézis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.
![]() ![]() |
[7] |
K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.
doi: 10.1016/S0022-0396(03)00121-9.![]() ![]() ![]() |
[8] |
F. Gazzola and A. Malchiodi, Some remarks on the equation $ -Δ u = λ(1+u)^p$ for varying $λ, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.
doi: 10.1081/PDE-120002875.![]() ![]() ![]() |
[9] |
Y. Sun, Estimates for extremal values of $ -Δ u = h(x)u^q +λ W(x)u^p$, Commun. Pure Appl. Anal., 9 (2010), 751-760.
doi: 10.3934/cpaa.2010.9.751.![]() ![]() ![]() |
[10] |
Y. Sun and S. Li, A nonlinear elliptic equation with critical exponent: Estimates for extremal values, Nonlinear Anal., 69 (2008), 1856-1869.
doi: 10.1016/j.na.2007.07.030.![]() ![]() ![]() |
[11] |
Y. Sun and S. Li, Some remarks on a superlinear-singular problem: Estimates of $λ ^* $, Nonlinear Anal., 69 (2008), 2636-2650.
doi: 10.1016/j.na.2007.08.037.![]() ![]() ![]() |
[12] |
J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556.![]() ![]() ![]() |