September  2017, 16(5): 1531-1552. doi: 10.3934/cpaa.2017073

Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential

1. 

Concord University College, Fujian Normal University, Fuzhou, 350117, China

2. 

College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, China

Received  October 2014 Revised  February 2017 Published  May 2017

Fund Project: This work is supported by NSF of China (No. 11371091) and the innovation group of `Nonlinear analysis and its applications' (No. 021337120).

In this paper, variational methods are used to establish some existence and multiplicity results and provide uniform estimates of extremal values for a class of elliptic equations of the form:
$-Δ u - {{λ}\over{|x|^2}}u = h(x) u^q + μ W(x) u^p,\ \ x∈Ω\backslash\{0\}$
with Dirichlet boundary conditions, where
$0∈ Ω\subset\mathbb{R}^N $
(
$N≥q 3 $
) be a bounded domain with smooth boundary
$\partial Ω $
,
$μ>0 $
is a parameter,
$0 < λ < Λ={{(N-2)^2}\over{4}}$, $0 < q < 1 < p < 2^*-1 $
,
$h(x)>0 $
and
$W(x) $
is a given function with the set
$\{x∈ Ω: W(x)>0\} $
of positive measure.
Citation: Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073
References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.  Google Scholar

[3]

C. O. Alves and A. El Hamidi, Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear Anal., 60 (2005), 611-624.  doi: 10.1016/j.na.2004.09.039.  Google Scholar

[4]

J. García-AzoreroI. Peral and A. Primo, A borderline case in elliptic problems involving weights of Caffarelli-Kohn-Nirenberg type, Nonlinear Anal., 67 (2007), 1878-1894.  doi: 10.1016/j.na.2006.07.046.  Google Scholar

[5]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.  doi: 10.2307/1999277.  Google Scholar

[6]

H. Brézis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[7]

K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

F. Gazzola and A. Malchiodi, Some remarks on the equation $ -Δ u = λ(1+u)^p$ for varying $λ, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.  doi: 10.1081/PDE-120002875.  Google Scholar

[9]

Y. Sun, Estimates for extremal values of $ -Δ u = h(x)u^q +λ W(x)u^p$, Commun. Pure Appl. Anal., 9 (2010), 751-760.  doi: 10.3934/cpaa.2010.9.751.  Google Scholar

[10]

Y. Sun and S. Li, A nonlinear elliptic equation with critical exponent: Estimates for extremal values, Nonlinear Anal., 69 (2008), 1856-1869.  doi: 10.1016/j.na.2007.07.030.  Google Scholar

[11]

Y. Sun and S. Li, Some remarks on a superlinear-singular problem: Estimates of $λ ^* $, Nonlinear Anal., 69 (2008), 2636-2650.  doi: 10.1016/j.na.2007.08.037.  Google Scholar

[12]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.  doi: 10.1006/jfan.1999.3556.  Google Scholar

show all references

References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.  Google Scholar

[3]

C. O. Alves and A. El Hamidi, Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear Anal., 60 (2005), 611-624.  doi: 10.1016/j.na.2004.09.039.  Google Scholar

[4]

J. García-AzoreroI. Peral and A. Primo, A borderline case in elliptic problems involving weights of Caffarelli-Kohn-Nirenberg type, Nonlinear Anal., 67 (2007), 1878-1894.  doi: 10.1016/j.na.2006.07.046.  Google Scholar

[5]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.  doi: 10.2307/1999277.  Google Scholar

[6]

H. Brézis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[7]

K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

F. Gazzola and A. Malchiodi, Some remarks on the equation $ -Δ u = λ(1+u)^p$ for varying $λ, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.  doi: 10.1081/PDE-120002875.  Google Scholar

[9]

Y. Sun, Estimates for extremal values of $ -Δ u = h(x)u^q +λ W(x)u^p$, Commun. Pure Appl. Anal., 9 (2010), 751-760.  doi: 10.3934/cpaa.2010.9.751.  Google Scholar

[10]

Y. Sun and S. Li, A nonlinear elliptic equation with critical exponent: Estimates for extremal values, Nonlinear Anal., 69 (2008), 1856-1869.  doi: 10.1016/j.na.2007.07.030.  Google Scholar

[11]

Y. Sun and S. Li, Some remarks on a superlinear-singular problem: Estimates of $λ ^* $, Nonlinear Anal., 69 (2008), 2636-2650.  doi: 10.1016/j.na.2007.08.037.  Google Scholar

[12]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.  doi: 10.1006/jfan.1999.3556.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[10]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[11]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (59)
  • Cited by (1)

Other articles
by authors

[Back to Top]