• Previous Article
    Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition
  • CPAA Home
  • This Issue
  • Next Article
    Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential
September  2017, 16(5): 1553-1570. doi: 10.3934/cpaa.2017074

On uniform estimate of complex elliptic equations on closed Hermitian manifolds

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  July 2015 Revised  January 2017 Published  May 2017

Fund Project: The author is supported by China Postdoctoral Science Foundation (Grant No. 2015M571478) and National Natural Science Foundation of China (Grant No. 11501119)

In this paper, we study Hessian equations and complex quotient equations on closed Hermitian manifolds. We directly derive the uniform estimate for the admissible solution. As an application, we solve general Hessian equations on closed Kähler manifolds.

Citation: Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074
References:
[1]

Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A, 48 (2005), 244-247. doi: 10.1007/BF02884710. Google Scholar

[2]

X. X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 2000 (2000), 607-623. doi: 10.1155/S1073792800000337. Google Scholar

[3]

P. Cherrier, Equations de Monge-Ampére sur les variétés hermitiennes compactes, Bull. Sci. Math., 111 (1987), 343-385. Google Scholar

[4]

S. Dinew and S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, Am. J. Math. to appear.Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math., 3 (1999), 1-16. doi: 10.4310/AJM.1999.v3.n1.a1. Google Scholar

[6]

H. FangM. J. Lai and X. N. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220. doi: 10.1515/CRELLE.2011.027. Google Scholar

[7]

L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957-965. Google Scholar

[8]

B. Guan and W. Sun, On a class of fully nonlinear elliptic equations on Hermitian manifolds, Calc.Var. PDE, 54 (2015), 901-916. doi: 10.1007/s00526-014-0810-1. Google Scholar

[9]

Z. L. HouX. N. Ma and D. M. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561. doi: 10.4310/MRL.2010.v17.n3.a12. Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229. doi: 10.1002/cpa.20182. Google Scholar

[11]

W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds, J. Geom. Anal., 26 (2016), 2459-2473. doi: 10.1007/s12220-015-9634-2. Google Scholar

[12]

W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds Ⅱ: $L^∞ $ estimate, Comm. Pure Appl. Math., 70 (2017), 172-199. doi: 10.1002/cpa.21652. Google Scholar

[13]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. to appear.Google Scholar

[14]

V. TosattiY. WangB. Weinkove and X.-K. Yang, $C^{2,α} $ estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. PDE, 54 (2015), 431-453. doi: 10.1007/s00526-014-0791-0. Google Scholar

[15]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampére equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40. doi: 10.4310/AJM.2010.v14.n1.a3. Google Scholar

[16]

V. Tosatti and B. Weinkove, The complex Monge-Ampére equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195. doi: 10.1090/S0894-0347-2010-00673-X. Google Scholar

[17]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I., Comm. Pure Appl. Math., 31 (1978), 339-411. doi: 10.1002/cpa.3160310304. Google Scholar

[18]

D. K. Zhang, Hessian equations on closed Hermitian manifolds, preprint, arXiv: 1501.03553.Google Scholar

show all references

References:
[1]

Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A, 48 (2005), 244-247. doi: 10.1007/BF02884710. Google Scholar

[2]

X. X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 2000 (2000), 607-623. doi: 10.1155/S1073792800000337. Google Scholar

[3]

P. Cherrier, Equations de Monge-Ampére sur les variétés hermitiennes compactes, Bull. Sci. Math., 111 (1987), 343-385. Google Scholar

[4]

S. Dinew and S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, Am. J. Math. to appear.Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math., 3 (1999), 1-16. doi: 10.4310/AJM.1999.v3.n1.a1. Google Scholar

[6]

H. FangM. J. Lai and X. N. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220. doi: 10.1515/CRELLE.2011.027. Google Scholar

[7]

L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957-965. Google Scholar

[8]

B. Guan and W. Sun, On a class of fully nonlinear elliptic equations on Hermitian manifolds, Calc.Var. PDE, 54 (2015), 901-916. doi: 10.1007/s00526-014-0810-1. Google Scholar

[9]

Z. L. HouX. N. Ma and D. M. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561. doi: 10.4310/MRL.2010.v17.n3.a12. Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229. doi: 10.1002/cpa.20182. Google Scholar

[11]

W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds, J. Geom. Anal., 26 (2016), 2459-2473. doi: 10.1007/s12220-015-9634-2. Google Scholar

[12]

W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds Ⅱ: $L^∞ $ estimate, Comm. Pure Appl. Math., 70 (2017), 172-199. doi: 10.1002/cpa.21652. Google Scholar

[13]

G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. to appear.Google Scholar

[14]

V. TosattiY. WangB. Weinkove and X.-K. Yang, $C^{2,α} $ estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. PDE, 54 (2015), 431-453. doi: 10.1007/s00526-014-0791-0. Google Scholar

[15]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampére equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40. doi: 10.4310/AJM.2010.v14.n1.a3. Google Scholar

[16]

V. Tosatti and B. Weinkove, The complex Monge-Ampére equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195. doi: 10.1090/S0894-0347-2010-00673-X. Google Scholar

[17]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I., Comm. Pure Appl. Math., 31 (1978), 339-411. doi: 10.1002/cpa.3160310304. Google Scholar

[18]

D. K. Zhang, Hessian equations on closed Hermitian manifolds, preprint, arXiv: 1501.03553.Google Scholar

[1]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[2]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[3]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[4]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[5]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[6]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[7]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[8]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[9]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[10]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[11]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[12]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[13]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[14]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[15]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[16]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[17]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[18]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[19]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[20]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (26)
  • HTML views (35)
  • Cited by (1)

Other articles
by authors

[Back to Top]