-
Previous Article
Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent
- CPAA Home
- This Issue
-
Next Article
On uniform estimate of complex elliptic equations on closed Hermitian manifolds
Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition
Division of Mathematical Sciences, Graduate School of Comparative Culture, Kurume University, Miimachi, Kurume, Fukuoka 839-8502, Japan |
$ D\subset R^{d}$ |
$d- $ |
$R^{d} $ |
$\left\{ \begin{gathered}u_{tt}(t)-ρ(t)Δ u(t)+b(x)u_{t}(t)=f(u(t)), \\ u(t)=0\ \ \text{on }Γ_{0}×(0,T), \\ \dfrac{\partial u(t)}{\partialν}+γ(u_{t}(t))=0\ \ \text{on }Γ _{1}×(0,T), \\ u(0)=u_{0},u_{t}(0)=u_{1},\end{gathered} \right.$ |
$\left\| {{u_0}} \right\| < {\lambda _\beta }, $ |
$ E(0) < d_{β},$ |
$λ_{β}, $ |
$d_{β} $ |
$Γ=Γ_{0}\cupΓ_{1} $ |
$\bar{Γ}_{0}\cap\bar{Γ}_{1}=φ. $ |
References:
[1] |
F. D. Araruna and A. B. Maciel,
Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis, 67 (2007), 1288-1305.
doi: 10.1016/j.na.2006.07.015. |
[2] |
M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez,
Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.
doi: 10.1016/j.jde.2004.04.011. |
[3] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti,
Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appli., 291 (2004), 109-127.
doi: 10.1016/j.jmaa.2003.10.020. |
[4] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka,
Well posedness and optimal decay rates for the wave equation with nonlinear damping-source interaction, J. Differential Equations, 236 (2007), 407-459.
|
[5] |
M. M. Cavalcanti, V. N. D. Cavalcanti and J. A. Soriano,
On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, J. Math. Anal. Appli., 281 (2003), 108-124.
|
[6] |
V. Georgiev and G. Todorova,
Existence of a solution of the wave equation with damping and source terms, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051. |
[7] |
S. Gerbi and B. Said-Houari,
Local existence and exponential growth for a semilinear damping wave equation with dynamic boundary conditions, Ad. Diff. Equ., 13 (2008), 1051-1074.
|
[8] |
B. Guo and Z-C. Shao,
On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback, Nonlinear Analysis, 71 (2009), 5961-5978.
doi: 10.1016/j.na.2009.05.018. |
[9] |
V. Komornik and E. Zuazua,
A direct method for boundary stabilization of the wave equation, J. Math. Pures et appl., 69 (1990), 33-54.
|
[10] |
A. T. Louredo, M. A. Ferreira and M. M. Miranda,
On a nonlinear wave equation with boundary damping, Math. Meth. in Applied Sciences, 37 (2014), 1278-1302.
|
[11] |
J. Malek, J. Necas, M. Rokyta and M. Ruzicka,
Weak and Measure-valued Solutions to Evolutionary PDEs Chapman and Hall, 1996.
doi: 10.1007/978-1-4899-6824-1. |
[12] |
S. A. Messaoudi,
Blow up in a nonlinearly damped wave equation, Math Nachr, 231 (2001), 105-111.
doi: 10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.3.CO;2-9. |
[13] |
K. Ono,
Asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. in Applied Sciences, 20 (1997), 151-177.
doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S. |
[14] |
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlarg, Berlin, 1989.
doi: 10.1007/978-1-4684-0313-8. |
[15] |
E. Vitillaro,
A potential well method for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J, 44 (2002), 375-395.
doi: 10.1017/S0017089502030045. |
[16] |
E. Vitillaro,
Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298.
doi: 10.1016/S0022-0396(02)00023-2. |
[17] |
Zai-yun Zhang and Xiu-jin Miao,
Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Math. Appli., 59 (2010), 1003-1018.
doi: 10.1016/j.camwa.2009.09.008. |
show all references
References:
[1] |
F. D. Araruna and A. B. Maciel,
Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis, 67 (2007), 1288-1305.
doi: 10.1016/j.na.2006.07.015. |
[2] |
M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez,
Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.
doi: 10.1016/j.jde.2004.04.011. |
[3] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti,
Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appli., 291 (2004), 109-127.
doi: 10.1016/j.jmaa.2003.10.020. |
[4] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka,
Well posedness and optimal decay rates for the wave equation with nonlinear damping-source interaction, J. Differential Equations, 236 (2007), 407-459.
|
[5] |
M. M. Cavalcanti, V. N. D. Cavalcanti and J. A. Soriano,
On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, J. Math. Anal. Appli., 281 (2003), 108-124.
|
[6] |
V. Georgiev and G. Todorova,
Existence of a solution of the wave equation with damping and source terms, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051. |
[7] |
S. Gerbi and B. Said-Houari,
Local existence and exponential growth for a semilinear damping wave equation with dynamic boundary conditions, Ad. Diff. Equ., 13 (2008), 1051-1074.
|
[8] |
B. Guo and Z-C. Shao,
On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback, Nonlinear Analysis, 71 (2009), 5961-5978.
doi: 10.1016/j.na.2009.05.018. |
[9] |
V. Komornik and E. Zuazua,
A direct method for boundary stabilization of the wave equation, J. Math. Pures et appl., 69 (1990), 33-54.
|
[10] |
A. T. Louredo, M. A. Ferreira and M. M. Miranda,
On a nonlinear wave equation with boundary damping, Math. Meth. in Applied Sciences, 37 (2014), 1278-1302.
|
[11] |
J. Malek, J. Necas, M. Rokyta and M. Ruzicka,
Weak and Measure-valued Solutions to Evolutionary PDEs Chapman and Hall, 1996.
doi: 10.1007/978-1-4899-6824-1. |
[12] |
S. A. Messaoudi,
Blow up in a nonlinearly damped wave equation, Math Nachr, 231 (2001), 105-111.
doi: 10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.3.CO;2-9. |
[13] |
K. Ono,
Asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. in Applied Sciences, 20 (1997), 151-177.
doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S. |
[14] |
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlarg, Berlin, 1989.
doi: 10.1007/978-1-4684-0313-8. |
[15] |
E. Vitillaro,
A potential well method for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J, 44 (2002), 375-395.
doi: 10.1017/S0017089502030045. |
[16] |
E. Vitillaro,
Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298.
doi: 10.1016/S0022-0396(02)00023-2. |
[17] |
Zai-yun Zhang and Xiu-jin Miao,
Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Math. Appli., 59 (2010), 1003-1018.
doi: 10.1016/j.camwa.2009.09.008. |
[1] |
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 |
[2] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[3] |
Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001 |
[4] |
Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 |
[5] |
Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393 |
[6] |
Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559 |
[7] |
Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 |
[8] |
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 |
[9] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[10] |
Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070 |
[11] |
Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179 |
[12] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[13] |
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693 |
[14] |
Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 |
[15] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[16] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 |
[17] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[18] |
Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations and Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645 |
[19] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1987-2020. doi: 10.3934/cpaa.2021055 |
[20] |
Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]