• Previous Article
    Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces
  • CPAA Home
  • This Issue
  • Next Article
    Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent
September  2017, 16(5): 1603-1615. doi: 10.3934/cpaa.2017077

Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$

School of Mathematical Sciences, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, PR China

Received  August 2016 Revised  March 2017 Published  May 2017

Fund Project: The author is supported by Fundamental Research Funds for the Central Universities grant DUT16RC(4)54 and DUT15QY20, China Postdoctoral Science Foundation grant 2015M571293 and National Natural Science Foundation of China grant 11601057.

In this article we study the following quasilinear Schrödinger equation
$-Δ u+V(x)u-Δ(u^{2})u=g(u), x∈ \mathbb{R}^{N},$
where
$ V(x)$
tends to some limit
$V_{∞}>0 $
as
$|x|\to∞ $
and
$g∈ C(\mathbb{R},\mathbb{R}) $
. We prove the existence of positive solutions by using the Nehari manifold.
Citation: Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077
References:
[1]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with H1-subcritical exponent, Adv. Nonlinear Stud., 12 (2012), 255-279.  doi: 10.1515/ans-2012-0205.

[2]

S. Adachi and T. Watanabe, Asymptotic uniqueness of ground states for a class of quasilinear Schrödinger equations with H1-supercritical exponent, J. Diff. Eq., 260 (2016), 3086-3118.  doi: 10.1016/j.jde.2015.10.029.

[3]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb{R}^N $, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.

[4]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.

[5]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-Δ u+a(x)u=u^{(N+1)/(N-2)} $ in $\mathbb{R}^N $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[7]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb{R}^N $ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.

[8]

G. Cerami, Some nonlinear elliptic problems in unbounded domains, Milan J. Math., 74 (2006), 47-77.  doi: 10.1007/s00032-006-0059-z.

[9]

G. Cerami and C. Maniscalco, Multiple positive solutions for a singularly perturbed Dirichlet problem in "geometrically trivial" domains, Topol. Methods Nonlinear Anal., 19 (2002), 63-76.  doi: 10.12775/TMNA.2002.004.

[10]

G. Cerami and D. Passaseo, High energy positive solutions for mixed and Neumann elliptic problems with critical nonlinearity, J. Anal. Math., 71 (1997), 1-39.  doi: 10.1007/BF02788020.

[11]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var., 17 (2003), 257-281. 

[12]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Eq., 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.

[13]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[14]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal., 9 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.

[15]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var., 38 (2010), 275-315.  doi: 10.1007/s00526-009-0286-6.

[16]

G. Evéquoz and T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12 (2012), 281-314.  doi: 10.1515/ans-2012-0206.

[17]

X. D. Fang and Z. Q. Han, Existence of a Ground State Solution for a Quasilinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 941-950.  doi: 10.1515/ans-2014-0407.

[18]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq., 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.

[19]

N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, in Cambridge University Press, (1993), xviii-258.  doi: 10.1017/CBO9780511551703.

[20]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^N $, in Mathematical Analysis and Applications (Part A), Academic Press, (1981), 369-402. 

[21]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbb{R}^N $, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.

[22]

R. Lehrer and L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213-246.  doi: 10.1016/j.jfa.2013.09.002.

[23]

R. LehrerL. A. Maia and R. Ruviaro, Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, Nonlinear Diff. Equ. Appl., 22 (2015), 651-672.  doi: 10.1007/s00030-014-0299-5.

[24]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Diff. Eq., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[25]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[26]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[27]

L. A. Maia and R. Ruviaro, Sign-changing solutions for a Schrödinger equation with saturable nonlinearity, Milan J. Math., 79 (2011), 259-271.  doi: 10.1007/s00032-011-0145-8.

[28]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var., 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[29]

E. A. Silva and G. G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonl. Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.

[30]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[31]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, (2010), 597-632. 

[32]

M. Willem, Minimax Theorems, in Progress in Nonlinear Differential Equations and their Applications, 24, Birkhࢴuser Boston, Inc., Boston, (1996), ⅹ-162.  doi: 10.1007/978-1-4612-4146-1.

[33]

Y. J. Wang and W. M. Zou, Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3.

show all references

References:
[1]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with H1-subcritical exponent, Adv. Nonlinear Stud., 12 (2012), 255-279.  doi: 10.1515/ans-2012-0205.

[2]

S. Adachi and T. Watanabe, Asymptotic uniqueness of ground states for a class of quasilinear Schrödinger equations with H1-supercritical exponent, J. Diff. Eq., 260 (2016), 3086-3118.  doi: 10.1016/j.jde.2015.10.029.

[3]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb{R}^N $, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.

[4]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.

[5]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-Δ u+a(x)u=u^{(N+1)/(N-2)} $ in $\mathbb{R}^N $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[7]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb{R}^N $ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.

[8]

G. Cerami, Some nonlinear elliptic problems in unbounded domains, Milan J. Math., 74 (2006), 47-77.  doi: 10.1007/s00032-006-0059-z.

[9]

G. Cerami and C. Maniscalco, Multiple positive solutions for a singularly perturbed Dirichlet problem in "geometrically trivial" domains, Topol. Methods Nonlinear Anal., 19 (2002), 63-76.  doi: 10.12775/TMNA.2002.004.

[10]

G. Cerami and D. Passaseo, High energy positive solutions for mixed and Neumann elliptic problems with critical nonlinearity, J. Anal. Math., 71 (1997), 1-39.  doi: 10.1007/BF02788020.

[11]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var., 17 (2003), 257-281. 

[12]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Eq., 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.

[13]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[14]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal., 9 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.

[15]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var., 38 (2010), 275-315.  doi: 10.1007/s00526-009-0286-6.

[16]

G. Evéquoz and T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12 (2012), 281-314.  doi: 10.1515/ans-2012-0206.

[17]

X. D. Fang and Z. Q. Han, Existence of a Ground State Solution for a Quasilinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 941-950.  doi: 10.1515/ans-2014-0407.

[18]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq., 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.

[19]

N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, in Cambridge University Press, (1993), xviii-258.  doi: 10.1017/CBO9780511551703.

[20]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^N $, in Mathematical Analysis and Applications (Part A), Academic Press, (1981), 369-402. 

[21]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbb{R}^N $, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.

[22]

R. Lehrer and L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213-246.  doi: 10.1016/j.jfa.2013.09.002.

[23]

R. LehrerL. A. Maia and R. Ruviaro, Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, Nonlinear Diff. Equ. Appl., 22 (2015), 651-672.  doi: 10.1007/s00030-014-0299-5.

[24]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Diff. Eq., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[25]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[26]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[27]

L. A. Maia and R. Ruviaro, Sign-changing solutions for a Schrödinger equation with saturable nonlinearity, Milan J. Math., 79 (2011), 259-271.  doi: 10.1007/s00032-011-0145-8.

[28]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var., 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[29]

E. A. Silva and G. G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonl. Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.

[30]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[31]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, (2010), 597-632. 

[32]

M. Willem, Minimax Theorems, in Progress in Nonlinear Differential Equations and their Applications, 24, Birkhࢴuser Boston, Inc., Boston, (1996), ⅹ-162.  doi: 10.1007/978-1-4612-4146-1.

[33]

Y. J. Wang and W. M. Zou, Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3.

[1]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[2]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[3]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[4]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[5]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[6]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[7]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[8]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[9]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[10]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[11]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[12]

Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021036

[13]

Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209

[14]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[15]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[16]

Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145

[17]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[18]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[19]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[20]

Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (243)
  • HTML views (72)
  • Cited by (2)

Other articles
by authors

[Back to Top]