# American Institute of Mathematical Sciences

September  2017, 16(5): 1641-1671. doi: 10.3934/cpaa.2017079

## Existence and concentration for Kirchhoff type equations around topologically critical points of the potential

 1 Institute of Mathematics, Academy of Mathematics and Systems Science, University of Chinese Academy of Science, Chinese Academy of Science, Beijing 100190, China 2 Department of Mathematics, Honghe University Mengzi, Yunnan 661100, China 3 Department of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China

Received  September 2016 Revised  March 2017 Published  May 2017

We consider the existence and concentration of solutions for the following Kirchhoff Type Equations
 $-\varepsilon^2 M \left( \varepsilon^{2-N} \displaystyle \int_{\mathbb{R}^N} |\nabla v|^2dx \right)Δ v+V(x)v=f(v), \mathrm{in} \ \mathbb{R}^N.$
Under suitable conditions on the continuous functions
 $M$
,
 $V$
and
 $f$
, we obtain a family of positive solutions concentrating around the local maximum or saddle points of
 $V$
. Moreover with appropriate assumptions on
 $V$
, we also have multiple solutions clustering respectively around three kinds of critical points of
 $V$
.
Citation: Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079
##### References:
 [1] A. Azzollini, The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554. [2] F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.  doi: 10.2307/1990893. [3] P. Avenia, A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009. [4] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. [5] H. Berestycki and P. L. Lions, Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555. [6] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551. doi: 10.1007/s00205-008-0178-5. [7] J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899.  doi: 10.4171/JEMS/407. [8] J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014). [9] C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908.  doi: 10.1016/j.jde.2010.11.017. [10] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002. [11] M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950. [12] M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7. [13] M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265.  doi: 10.1006/jfan.1996.3085. [14] M. Del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989.  doi: 10.1016/S0362-546X(97)00593-2. [15] T. D'Aprile and D. Ruiz, Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634.  doi: 10.1007/s00209-010-0686-5. [16] G. Figueiredo, N. Ikoma and J. R. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979.  doi: 10.1007/s00205-014-0747-8. [17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. [18] M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. [19] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035. [20] L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1. [21] G. Mechanik Kirchhoff, Teubner, Leipzig, 1883. [22] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346. [23] P. L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508.  doi: 10.2307/2045002. [24] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. [25] Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769.  doi: 10.1007/s00033-014-0431-8. [26] Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167.  doi: 10.1016/j.anihpc.2013.01.006. [27] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011. [28] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977. [29] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1. [30] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006. [31] W. A. Strauss, Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162. [32] C. E. Vasconcellos, On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329. [33] J. Wang, L. Tian and J. Xu, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.  doi: 10.1016/j.jde.2012.05.023. [34] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287.  doi: 10.1016/j.nonrwa.2010.09.023. [35] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. [36] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.  doi: 10.1137/S0036141095290240. [37] Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.

show all references

##### References:
 [1] A. Azzollini, The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554. [2] F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.  doi: 10.2307/1990893. [3] P. Avenia, A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009. [4] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. [5] H. Berestycki and P. L. Lions, Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555. [6] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551. doi: 10.1007/s00205-008-0178-5. [7] J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899.  doi: 10.4171/JEMS/407. [8] J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014). [9] C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908.  doi: 10.1016/j.jde.2010.11.017. [10] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002. [11] M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950. [12] M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7. [13] M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265.  doi: 10.1006/jfan.1996.3085. [14] M. Del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989.  doi: 10.1016/S0362-546X(97)00593-2. [15] T. D'Aprile and D. Ruiz, Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634.  doi: 10.1007/s00209-010-0686-5. [16] G. Figueiredo, N. Ikoma and J. R. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979.  doi: 10.1007/s00205-014-0747-8. [17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. [18] M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. [19] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035. [20] L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1. [21] G. Mechanik Kirchhoff, Teubner, Leipzig, 1883. [22] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346. [23] P. L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508.  doi: 10.2307/2045002. [24] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. [25] Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769.  doi: 10.1007/s00033-014-0431-8. [26] Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167.  doi: 10.1016/j.anihpc.2013.01.006. [27] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011. [28] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977. [29] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1. [30] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006. [31] W. A. Strauss, Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162. [32] C. E. Vasconcellos, On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329. [33] J. Wang, L. Tian and J. Xu, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.  doi: 10.1016/j.jde.2012.05.023. [34] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287.  doi: 10.1016/j.nonrwa.2010.09.023. [35] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. [36] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.  doi: 10.1137/S0036141095290240. [37] Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.
 [1] Chao Ji, Vicenţiu D. Rădulescu. Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5551-5577. doi: 10.3934/dcds.2021088 [2] Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039 [3] Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566 [4] Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 [5] Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 [6] Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 [7] Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 [8] Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 [9] Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 [10] Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 [11] Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080 [12] Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096 [13] Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 [14] Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 [15] Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027 [16] Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure and Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 [17] E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209 [18] Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 [19] Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 [20] Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

2020 Impact Factor: 1.916