-
Previous Article
Semilinear damped wave equation in locally uniform spaces
- CPAA Home
- This Issue
-
Next Article
Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces
Existence and concentration for Kirchhoff type equations around topologically critical points of the potential
1. | Institute of Mathematics, Academy of Mathematics and Systems Science, University of Chinese Academy of Science, Chinese Academy of Science, Beijing 100190, China |
2. | Department of Mathematics, Honghe University Mengzi, Yunnan 661100, China |
3. | Department of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China |
$-\varepsilon^2 M \left( \varepsilon^{2-N} \displaystyle \int_{\mathbb{R}^N} |\nabla v|^2dx \right)Δ v+V(x)v=f(v), \mathrm{in} \ \mathbb{R}^N.$ |
$M$ |
$V$ |
$f$ |
$V$ |
$V$ |
$V$ |
References:
[1] |
A. Azzollini,
The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554.
|
[2] |
F. J. Almgren and E. H. Lieb,
Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.
doi: 10.2307/1990893. |
[3] |
P. Avenia, A. Pomponio and D. Ruiz,
Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633.
doi: 10.1016/j.jfa.2012.03.009. |
[4] |
H. Brezis and T. Kato,
Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.
|
[5] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[6] |
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551.
doi: 10.1007/s00205-008-0178-5. |
[7] |
J. Byeon and K. Tanaka,
Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899.
doi: 10.4171/JEMS/407. |
[8] |
J. Byeon and K. Tanaka,
Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014).
|
[9] |
C. Chen, Y. Kuo and T. Wu,
The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[10] |
V. Coti Zelati and P. H. Rabinowitz,
Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269.
doi: 10.1002/cpa.3160451002. |
[11] |
M. Del Pino and P. L. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[12] |
M. Del Pino and P. L. Felmer,
Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149.
doi: 10.1016/S0294-1449(97)89296-7. |
[13] |
M. Del Pino and P. L. Felmer,
Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265.
doi: 10.1006/jfan.1996.3085. |
[14] |
M. Del Pino, P. L. Felmer and O. H. Miyagaki,
Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989.
doi: 10.1016/S0362-546X(97)00593-2. |
[15] |
T. D'Aprile and D. Ruiz,
Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634.
doi: 10.1007/s00209-010-0686-5. |
[16] |
G. Figueiredo, N. Ikoma and J. R. Júnior,
Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979.
doi: 10.1007/s00205-014-0747-8. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. |
[18] |
M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. |
[19] |
X. He and W. Zou,
Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[20] |
L. Jeanjean and K. Tanaka,
A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.
doi: 10.1090/S0002-9939-02-06821-1. |
[21] | |
[22] |
J. L. Lions,
On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346.
|
[23] |
P. L. Lions,
A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508.
doi: 10.2307/2045002. |
[24] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283.
|
[25] |
Z. Liu and S. Guo,
Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769.
doi: 10.1007/s00033-014-0431-8. |
[26] |
Z. Liang, F. Li and J. Shi,
Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006. |
[27] |
G. Li and H. Ye,
Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011. |
[28] |
T. F. Ma,
Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977.
|
[29] |
T. F. Ma and J. E. M. Rivera,
Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248.
doi: 10.1016/S0893-9659(03)80038-1. |
[30] |
K. Perera and Z. T. Zhang,
Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[31] |
W. A. Strauss,
Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162.
|
[32] |
C. E. Vasconcellos,
On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329.
|
[33] |
J. Wang, L. Tian and J. Xu,
Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023. |
[34] |
X. Wu,
Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287.
doi: 10.1016/j.nonrwa.2010.09.023. |
[35] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
|
[36] |
X. Wang and B. Zeng,
On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[37] |
Z. T. Zhang and K. Perera,
Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
show all references
References:
[1] |
A. Azzollini,
The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554.
|
[2] |
F. J. Almgren and E. H. Lieb,
Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.
doi: 10.2307/1990893. |
[3] |
P. Avenia, A. Pomponio and D. Ruiz,
Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633.
doi: 10.1016/j.jfa.2012.03.009. |
[4] |
H. Brezis and T. Kato,
Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.
|
[5] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[6] |
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551.
doi: 10.1007/s00205-008-0178-5. |
[7] |
J. Byeon and K. Tanaka,
Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899.
doi: 10.4171/JEMS/407. |
[8] |
J. Byeon and K. Tanaka,
Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014).
|
[9] |
C. Chen, Y. Kuo and T. Wu,
The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[10] |
V. Coti Zelati and P. H. Rabinowitz,
Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269.
doi: 10.1002/cpa.3160451002. |
[11] |
M. Del Pino and P. L. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[12] |
M. Del Pino and P. L. Felmer,
Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149.
doi: 10.1016/S0294-1449(97)89296-7. |
[13] |
M. Del Pino and P. L. Felmer,
Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265.
doi: 10.1006/jfan.1996.3085. |
[14] |
M. Del Pino, P. L. Felmer and O. H. Miyagaki,
Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989.
doi: 10.1016/S0362-546X(97)00593-2. |
[15] |
T. D'Aprile and D. Ruiz,
Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634.
doi: 10.1007/s00209-010-0686-5. |
[16] |
G. Figueiredo, N. Ikoma and J. R. Júnior,
Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979.
doi: 10.1007/s00205-014-0747-8. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. |
[18] |
M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. |
[19] |
X. He and W. Zou,
Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[20] |
L. Jeanjean and K. Tanaka,
A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.
doi: 10.1090/S0002-9939-02-06821-1. |
[21] | |
[22] |
J. L. Lions,
On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346.
|
[23] |
P. L. Lions,
A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508.
doi: 10.2307/2045002. |
[24] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283.
|
[25] |
Z. Liu and S. Guo,
Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769.
doi: 10.1007/s00033-014-0431-8. |
[26] |
Z. Liang, F. Li and J. Shi,
Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006. |
[27] |
G. Li and H. Ye,
Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011. |
[28] |
T. F. Ma,
Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977.
|
[29] |
T. F. Ma and J. E. M. Rivera,
Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248.
doi: 10.1016/S0893-9659(03)80038-1. |
[30] |
K. Perera and Z. T. Zhang,
Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[31] |
W. A. Strauss,
Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162.
|
[32] |
C. E. Vasconcellos,
On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329.
|
[33] |
J. Wang, L. Tian and J. Xu,
Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023. |
[34] |
X. Wu,
Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287.
doi: 10.1016/j.nonrwa.2010.09.023. |
[35] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
|
[36] |
X. Wang and B. Zeng,
On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[37] |
Z. T. Zhang and K. Perera,
Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[1] |
Chao Ji, Vicenţiu D. Rădulescu. Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5551-5577. doi: 10.3934/dcds.2021088 |
[2] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039 |
[3] |
Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566 |
[4] |
Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 |
[5] |
Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 |
[6] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[7] |
Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 |
[8] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[9] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[10] |
Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 |
[11] |
Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080 |
[12] |
Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096 |
[13] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[14] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
[15] |
Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027 |
[16] |
Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure and Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 |
[17] |
E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209 |
[18] |
Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 |
[19] |
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 |
[20] |
Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]