September  2017, 16(5): 1719-1730. doi: 10.3934/cpaa.2017083

Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators

1. 

Technische Universität Dortmund, Fakultät für Mathematik, 44227 Dortmund, Germany

2. 

Technische Universität Chemnitz, Fakultät für Mathematik, 09126 Chemnitz, Germany

* Corresponding author

Received  September 2016 Revised  February 2017 Published  May 2017

We prove a quantitative unique continuation principle for infinite dimensional spectral subspaces of Schrödinger operators. Let
$Λ_L = (-L/2, L/2)^d$
and
$H_L = -Δ_L + V_L$
be a Schrödinger operator on
$L^2 (Λ_L)$
with a bounded potential
$V_L : Λ_L \to \mathbb{R}^d$
and Dirichlet, Neumann, or periodic boundary conditions. Our main result is of the type
$ \int_{Λ_L} \lvert φ \rvert^2 \leq C_{\rm {sfuc}} \int_{W_δ (L)} \lvert φ \rvert^2,$
where
$φ$
is an infinite complex linear combination of eigenfunctions of
$H_L$
with exponentially decaying coefficients,
$W_δ (L)$
is some union of equidistributed
$δ$
-balls in
$Λ_L$
and
$C_{{\rm {sfuc}}} > 0$
an
$L$
-independent constant. The exponential decay condition on
$φ$
can alternatively be formulated as an exponential decay condition of the map
$λ \mapsto \lVert χ_{[λ, ∞)} (H_L) φ \rVert^2$
. The novelty is that at the same time we allow the function
$φ$
to be from an infinite dimensional spectral subspace and keep an explicit control over the constant
$C_{{\rm {sfuc}}}$
in terms of the parameters. Moreover, we show that a similar result cannot hold under a polynomial decay condition.
Citation: Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083
References:
[1]

L. Bakri, Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness, Commun. Part. Diff. Eq., 38 (2013), 69-91.  doi: 10.1080/03605302.2012.736912.  Google Scholar

[2]

D. I. Borisov, M. Tautenhahn and I. Veselić, Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations, preprint, arXiv: 1512.06347. Google Scholar

[3]

J. Bourgain and C. E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math., 161 (2005), 389-426.  doi: 10.1007/s00222-004-0435-7.  Google Scholar

[4]

J. Bourgain and A. Klein, Bounds on the density of states for Schrödinger operators, Invent. Math., 194 (2013), 41-72.  doi: 10.1007/s00222-012-0440-1.  Google Scholar

[5]

T. Carleman, Sur un probléme d'unicité pour les systémes d'équations aux dérivées partielles á deux variables indépendantes, Ark. Mat. Astron. Fysik, 26B (1939), 1-9.   Google Scholar

[6]

H. Donnelly and C. Fefferman, Nodal sets for eigenfunctions on Riemannian manifolds, Invent. math., 93 (1988), 161-183.  doi: 10.1007/BF01393691.  Google Scholar

[7] L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅰ: Distribution Theory and Fourier Analysis, 2 edition, Springer-Verlag, Berlin, 1990.  doi: 10.1007/978-3-642-61497-2.  Google Scholar
[8]

D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (eds. M. Christ, C. E. Kenig and C. Sadosky), Chicago Lecture notes in Mathematics, The University of Chicago Press, (1999), 223-239.  Google Scholar

[9]

A. Klein, Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for non-ergodic random Schrödinger operators, Commun. Math. Phys., 323 (2013), 1229-1246.  doi: 10.1007/s00220-013-1795-x.  Google Scholar

[10]

I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.  doi: 10.1215/S0012-7094-98-09111-6.  Google Scholar

[11]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Contr. Optim. Ca., 18 (2012), 712-747.  doi: 10.1051/cocv/2011168.  Google Scholar

[12]

V. Z. Meshkov, On the possible rate of decay at infinity of solutions of second order partial differential equations, Math. USSR Sb., 72 (1992), 343-361.   Google Scholar

[13]

I. NakićM. TäuferM. Tautenhahn and I. Veselić, Scale-free uncertainty principles and Wegner estimates for random breather potentials, C. R. Math., 353 (2015), 919-923.  doi: 10.1016/j.crma.2015.08.005.  Google Scholar

[14]

I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators, preprint, arXiv: 1609.01953. Google Scholar

[15]

C. Rojas-Molina and I. Veselić, Scale-free unique continuation estimates and application to random Schrödinger operators, Commun. Math. Phys., 320 (2013), 245-274.  doi: 10.1007/s00220-013-1683-4.  Google Scholar

[16]

M. Täufer, M. Tautenhahn and I. Veselić, Harmonic analysis and random Schrödinger operators, in Spectral Theory and Mathematical Physics (eds. M. Mantoiu, G. Raikov and R. Tiedra de Aldecoa), Operator Theory: Advances and Applications, vol. 254, Birkhäuser, Basel, (2016), 223-255. doi: 10.1007/978-3-319-29992-1_11.  Google Scholar

show all references

References:
[1]

L. Bakri, Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness, Commun. Part. Diff. Eq., 38 (2013), 69-91.  doi: 10.1080/03605302.2012.736912.  Google Scholar

[2]

D. I. Borisov, M. Tautenhahn and I. Veselić, Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations, preprint, arXiv: 1512.06347. Google Scholar

[3]

J. Bourgain and C. E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math., 161 (2005), 389-426.  doi: 10.1007/s00222-004-0435-7.  Google Scholar

[4]

J. Bourgain and A. Klein, Bounds on the density of states for Schrödinger operators, Invent. Math., 194 (2013), 41-72.  doi: 10.1007/s00222-012-0440-1.  Google Scholar

[5]

T. Carleman, Sur un probléme d'unicité pour les systémes d'équations aux dérivées partielles á deux variables indépendantes, Ark. Mat. Astron. Fysik, 26B (1939), 1-9.   Google Scholar

[6]

H. Donnelly and C. Fefferman, Nodal sets for eigenfunctions on Riemannian manifolds, Invent. math., 93 (1988), 161-183.  doi: 10.1007/BF01393691.  Google Scholar

[7] L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅰ: Distribution Theory and Fourier Analysis, 2 edition, Springer-Verlag, Berlin, 1990.  doi: 10.1007/978-3-642-61497-2.  Google Scholar
[8]

D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (eds. M. Christ, C. E. Kenig and C. Sadosky), Chicago Lecture notes in Mathematics, The University of Chicago Press, (1999), 223-239.  Google Scholar

[9]

A. Klein, Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for non-ergodic random Schrödinger operators, Commun. Math. Phys., 323 (2013), 1229-1246.  doi: 10.1007/s00220-013-1795-x.  Google Scholar

[10]

I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.  doi: 10.1215/S0012-7094-98-09111-6.  Google Scholar

[11]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Contr. Optim. Ca., 18 (2012), 712-747.  doi: 10.1051/cocv/2011168.  Google Scholar

[12]

V. Z. Meshkov, On the possible rate of decay at infinity of solutions of second order partial differential equations, Math. USSR Sb., 72 (1992), 343-361.   Google Scholar

[13]

I. NakićM. TäuferM. Tautenhahn and I. Veselić, Scale-free uncertainty principles and Wegner estimates for random breather potentials, C. R. Math., 353 (2015), 919-923.  doi: 10.1016/j.crma.2015.08.005.  Google Scholar

[14]

I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators, preprint, arXiv: 1609.01953. Google Scholar

[15]

C. Rojas-Molina and I. Veselić, Scale-free unique continuation estimates and application to random Schrödinger operators, Commun. Math. Phys., 320 (2013), 245-274.  doi: 10.1007/s00220-013-1683-4.  Google Scholar

[16]

M. Täufer, M. Tautenhahn and I. Veselić, Harmonic analysis and random Schrödinger operators, in Spectral Theory and Mathematical Physics (eds. M. Mantoiu, G. Raikov and R. Tiedra de Aldecoa), Operator Theory: Advances and Applications, vol. 254, Birkhäuser, Basel, (2016), 223-255. doi: 10.1007/978-3-319-29992-1_11.  Google Scholar

[1]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[2]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[3]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[4]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[5]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[6]

Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186

[7]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449

[8]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[9]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[10]

Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451

[11]

Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69

[12]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[13]

Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200

[14]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[15]

Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151

[16]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[17]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[18]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[19]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[20]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (18)
  • Cited by (2)

Other articles
by authors

[Back to Top]