-
Previous Article
Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials
- CPAA Home
- This Issue
-
Next Article
Semilinear nonlocal elliptic equations with critical and supercritical exponents
On some local-nonlocal elliptic equation involving nonlinear terms with exponential growth
Institut Supérieur des Mathématiques Appliquées et de l'Informatique de Kairouan, Avenue Assad Iben Fourat, 3100 Kairouan, Tunisie |
In this paper, we prove the existence of multiple solutions to some intermediate local-nonlocal elliptic equation in the whole two dimensional space. The nonlinearities exhibit an exponential growth at infinity.
References:
[1] |
C. O. Alves, F. J. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems Topol. Methods Nonlinear Anal. (2016).
doi: 10.12775/TMNA.2016.083. |
[2] |
C. O. Alves, M. Delgado, M. A. S. Souto and A. Suarez,
Existence of positive solution of a nonlocal logistic population model, Z. Angew. Math. Phys., 66 (2015), 943-953.
doi: 10.1007/s00033-014-0458-x. |
[3] |
C. O. Alves and G. M. Figueiredo,
On multiplicity and concentration of positive solutions
for a class of quasilinear problems with critical exponential growth in ${{\mathbb{R}}^{N}}$, J. Differential Equations, 246 (2009), 1288-1311.
doi: 10.1016/j.jde.2008.08.004. |
[4] |
S. Aouaoui,
Solutions to quasilinear equations of N-biharmonic type with degenerate coercivity, Electron. J. Differential Equations, 228 (2014), 1-12.
|
[5] |
S. Aouaoui,
A multiplicity result for some integro-differential biharmonic equation in $ \mathbb{R}^4$, J. Part. Diff. Eq., 29 (2016), 102-115.
doi: 10.4208/jpde.v29.n2.2. |
[6] |
A. Dall'Aglio, V. De Cicco, G. Giachetti and J. P. Puel,
Existence of bounded solutions for nonlinear elliptic equations in unboundd domains, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 431-450.
doi: 10.1007/s00030-004-1070-0. |
[7] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[8] |
J. M. do Ó, E. Medeiros and U. Severo,
On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^N$, J. Differential Equations, 246 (2009), 1363-1386.
doi: 10.1016/j.jde.2008.11.020. |
[9] |
I. Ekeland,
On the variational principle, J. Math. Anal. App., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[10] |
D. G. de Figueiredo, M. Girardi and M. Matzeu,
Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differ. Integral Equ., 17 (2004), 119-126.
|
[11] |
M. Girardi and M. Matzeu,
A compactness result for quasilinear elliptic equations by mountain pass techniques, Rend. Mat. Appl., 29 (2009), 83-95.
|
[12] |
O. Kavian,
Introduction á la théorie des points critiques et applications aux problémes elliptiques Springer-Verlag, Paris, France 1993. |
[13] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[14] |
V. Rǎdulescu and P. Pucci,
The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. Series Ⅸ, 3 (2010), 543-584.
|
[15] |
B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 2019 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[16] |
R. Servadei,
A semilinear elliptic PDE not in divergence form via variational methods, J. Math. Anal. Appl., 383 (2011), 190-199.
doi: 10.1016/j.jmaa.2011.05.017. |
[17] |
T. Silva, M. de Souza and J. M. do Ó,
Quasilinear nonhomogeneous Schröinger equation with critical exponential growth in $ \mathbb{R}^N$, Topol. Methods Nonlinear Anal., 45 (2015), 615-639.
doi: 10.12775/TMNA.2015.029. |
[18] |
E. Tonkes,
Solutions to a perturbed critical semilinear equation concerning the $N$
-Laplacian in $ \mathbb{R}^N$, Comment. Math. Univ. Carolin., 40 (1999), 679-699.
|
[19] |
N. S. Trudinger,
On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math., XX (1967), 721-747.
doi: 10.1002/cpa.3160200406. |
show all references
References:
[1] |
C. O. Alves, F. J. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems Topol. Methods Nonlinear Anal. (2016).
doi: 10.12775/TMNA.2016.083. |
[2] |
C. O. Alves, M. Delgado, M. A. S. Souto and A. Suarez,
Existence of positive solution of a nonlocal logistic population model, Z. Angew. Math. Phys., 66 (2015), 943-953.
doi: 10.1007/s00033-014-0458-x. |
[3] |
C. O. Alves and G. M. Figueiredo,
On multiplicity and concentration of positive solutions
for a class of quasilinear problems with critical exponential growth in ${{\mathbb{R}}^{N}}$, J. Differential Equations, 246 (2009), 1288-1311.
doi: 10.1016/j.jde.2008.08.004. |
[4] |
S. Aouaoui,
Solutions to quasilinear equations of N-biharmonic type with degenerate coercivity, Electron. J. Differential Equations, 228 (2014), 1-12.
|
[5] |
S. Aouaoui,
A multiplicity result for some integro-differential biharmonic equation in $ \mathbb{R}^4$, J. Part. Diff. Eq., 29 (2016), 102-115.
doi: 10.4208/jpde.v29.n2.2. |
[6] |
A. Dall'Aglio, V. De Cicco, G. Giachetti and J. P. Puel,
Existence of bounded solutions for nonlinear elliptic equations in unboundd domains, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 431-450.
doi: 10.1007/s00030-004-1070-0. |
[7] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[8] |
J. M. do Ó, E. Medeiros and U. Severo,
On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^N$, J. Differential Equations, 246 (2009), 1363-1386.
doi: 10.1016/j.jde.2008.11.020. |
[9] |
I. Ekeland,
On the variational principle, J. Math. Anal. App., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[10] |
D. G. de Figueiredo, M. Girardi and M. Matzeu,
Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differ. Integral Equ., 17 (2004), 119-126.
|
[11] |
M. Girardi and M. Matzeu,
A compactness result for quasilinear elliptic equations by mountain pass techniques, Rend. Mat. Appl., 29 (2009), 83-95.
|
[12] |
O. Kavian,
Introduction á la théorie des points critiques et applications aux problémes elliptiques Springer-Verlag, Paris, France 1993. |
[13] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[14] |
V. Rǎdulescu and P. Pucci,
The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. Series Ⅸ, 3 (2010), 543-584.
|
[15] |
B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 2019 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[16] |
R. Servadei,
A semilinear elliptic PDE not in divergence form via variational methods, J. Math. Anal. Appl., 383 (2011), 190-199.
doi: 10.1016/j.jmaa.2011.05.017. |
[17] |
T. Silva, M. de Souza and J. M. do Ó,
Quasilinear nonhomogeneous Schröinger equation with critical exponential growth in $ \mathbb{R}^N$, Topol. Methods Nonlinear Anal., 45 (2015), 615-639.
doi: 10.12775/TMNA.2015.029. |
[18] |
E. Tonkes,
Solutions to a perturbed critical semilinear equation concerning the $N$
-Laplacian in $ \mathbb{R}^N$, Comment. Math. Univ. Carolin., 40 (1999), 679-699.
|
[19] |
N. S. Trudinger,
On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math., XX (1967), 721-747.
doi: 10.1002/cpa.3160200406. |
[1] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[2] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[3] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[4] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[5] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[6] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[7] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[8] |
Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155 |
[9] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[10] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[11] |
Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 |
[12] |
Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 |
[13] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[14] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[15] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058 |
[16] |
Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064 |
[17] |
Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963 |
[18] |
Jean-Daniel Djida, Gisèle Mophou, Mahamadi Warma. Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022015 |
[19] |
Heting Zhang, Lei Li, Mingxin Wang. Free boundary problems for the local-nonlocal diffusive model with different moving parameters. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022085 |
[20] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]