September  2017, 16(5): 1807-1841. doi: 10.3934/cpaa.2017088

Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections

University of L'Aquila, DISIM, via Vetoio, Coppito, 67010 L'Aquila, Italy

 

Received  November 2016 Revised  March 2017 Published  May 2017

Let
$W:\mathbb{R}^m\to \mathbb{R}$
be a nonnegative potential with exactly two nondegenerate zeros
$a_-≠ a_+∈\mathbb{R}^m$
. We assume that there are
$N≥q 1$
distinct heteroclinic orbits connecting
$a_-$
to
$a_+$
represented by maps
$\bar{u}_1,...,\bar{u}_N$
that minimize the one-dimensional energy
$J_\mathbb{R}(u)=∈t_\mathbb{R}(\frac{\vert u^\prime\vert^2}{2}+W(u)){d} s$
.
We first consider the problem of characterizing the minimizers
$u:\mathbb{R}^n\to \mathbb{R}^m$
of the energy
$\mathcal{J}_Ω(u)=∈t_Ω(\frac{\vert\nabla u\vert^2}{2}+W(u)){d} x$
. Under a nondegeneracy condition on
$\bar{u}_j$
,
$j=1,...,N$
and in two space dimensions, we prove that, provided it remains away from
$a_-$
and
$a_+$
in corresponding half spaces
$S_-$
and
$S_+$
, a bounded minimizer
$u:\mathbb{R}^2\to \mathbb{R}^m$
is necessarily an heteroclinic connection between suitable translates
$\bar{u}_-(·-η_-)$
and
$\bar{u}_+(·-η_+)$
of some
$\bar{u}_±∈\{\bar{u}_1,...,\bar{u}_N\}$
.
Then we focus on the existence problem and assuming
$N=2$
and denoting
$\bar{u}_-,\bar{u}_+$
the representations of the two orbits connecting
$a_-$
to
$a_+$
we give a new proof of the existence (first proved in [32]) of a solution
$u:\mathbb{R}^2\to \mathbb{R}^m$
of
$Δ u=W_u(u),$
that connects certain translates of
$\bar{u}_±$
.
Citation: Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088
References:
[1]

S. AlamaL. Bronsard and C. Gui, Stationary layered solutions in $\mathbb{R}^2$ for an Allen-Cahn system with multiple well potential, Calc. Var., 5 (1997), 359-390.  doi: 10.1007/s005260050071.

[2]

S. Alama and Y. Li, On ''multibamp" bound states for certain semilinear elliptic equations, Ind. Uni. Math. Jour., 41 (1992), 983-1026.  doi: 10.1512/iumj.1992.41.41052.

[3]

G. AlbertiL. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: simmetry in 3D for general non linearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.  doi: 10.1023/A:1010602715526.

[4]

N. D. Alikakos, Some basic facts on the system $Δ u-W_u(u)=0$, Proc. Amer. Math. Soc., 139 (2011), 153-162.  doi: 10.1090/S0002-9939-2010-10453-7.

[5]

N. D. AlikakosS. I. Betelú and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energies, Eur. J. Appl. Math., 17 (2006), 525-556.  doi: 10.1017/S095679250600667X.

[6]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906.  doi: 10.1512/iumj.2008.57.3181.

[7]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves, Journal of the European Mathematical Society, 17 (2015), 1547-1567.  doi: 10.4171/JEMS/538.

[8]

N. D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications, Discr. Cont. Dynam. Syst., 35 (2015), 5631-5663.  doi: 10.3934/dcds.2015.35.5631.

[9]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, Amer. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.

[10]

P. W. Bates and X. Ren, Transition layers solutions of a higher order equation in an infinite tube, Comm. Part. Diff. Equat., 21 (1996), 195-220.  doi: 10.1080/03605309608821180.

[11]

P. W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures, preprint, arXiv: 1411.4008.

[12]

L. BronsardC. Gui and M. Schatzman, A three-layered minimizer in $\mathbb{R}^2$ for a variational problem with a symmetric three-well potential, Comm. Pure. Appl. Math., 49 (1996), 677-715.  doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO;2-6.

[13]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rat. Mech. Anal., 124 (1993), 355-379.  doi: 10.1007/BF00375607.

[14]

J. Carr and B. Pego, Metastable patterns in solutions of $u_t=ε^2 u_{xx}-f(u)$, Comm. Pure. Appl. Math., 42 (1989), 523-576.  doi: 10.1002/cpa.3160420502.

[15]

M. Del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N≥q 9$, Annal. Math., 174 (2011), 1485-1569.  doi: 10.4007/annals.2011.174.3.3.

[16]

A. Farina, Symmetry for solutions of semilinear elliptic equations in $\mathbb{R}^N$ and related conjectures, Rend. Mat. Acc. Lincei., 10 (1999), 255-265. 

[17]

A. Farina, On the classification of entire local minimizers of the Ginzburg-Landau equation, Contemp. Math., 595 (2013), 231-236.  doi: 10.1090/conm/595/11786.

[18]

A. FarinaB. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791. 

[19]

M. Fazly and N. Ghoussouby, De Giorgi type results for elliptic systems, Calc. Var. PDE, 47 (2013), 809-823.  doi: 10.1007/s00526-012-0536-x.

[20]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060.  doi: 10.3934/cpaa.2014.13.1045.

[21]

N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights an unique continuation, Indiana Univ. Math. J., 35 (1986), 245-267.  doi: 10.1512/iumj.1986.35.35015.

[22]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.  doi: 10.1007/s002080050196.

[23]

N. Ghoussoub and C. Gui, On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math., 157 (2003), 313-334.  doi: 10.4007/annals.2003.157.313.

[24]

C. Gui, Hamiltonian identities for elliptic differential equations, J. Funct. Anal., 254 (2008), 904-933.  doi: 10.1016/j.jfa.2007.10.015.

[25]

C. GuiA. Malchiodi and H. Xu, Axial symmetry of some steady state solutions to nonlinear Schrdinger equations, Proc. Amer. Math. Soc., 139 (2011), 1023-1032.  doi: 10.1090/S0002-9939-2010-10638-X.

[26]

C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Ind. Univ. Math. J., 57 (2008), 781-836.  doi: 10.1512/iumj.2008.57.3089.

[27]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. 840,1980.

[28]

A. Monteil and F. Santambrogio, Metric methods for heteroclinic connections Mathematical Methods in the Applied Sciences. doi: 10.1002/mma.4072.

[29]

P. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations, Jour. Math. Sci. Uni. Tokyo, 2 (1994), 525-550. 

[30]

W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Math. , 1973.

[31]

O. Savin, Regularity of level sets in phase transitions, Ann. Math., 169 (2009), 41-78.  doi: 10.4007/annals.2009.169.41.

[32]

M. Schatzman, Asymmetric heteroclinic double layers, ESAIM Control Optim. Calc. Var. , 8 (2002), 965–1005 (A tribute to J. L. Lions). doi: 10.1051/cocv:2002039.

[33]

N. Soave and S. Terracini, Liouville theorems and 1-dimensional symmetry for solutions of an elliptic system modeling phase separation, Adv. Math., 279 (2015), 29-66.  doi: 10.1016/j.aim.2015.03.015.

[34]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterranean Journal of Mathematics, 13 (2016), 4693-4710.  doi: 10.1007/s00009-016-0770-0.

[35]

A. Zuniga and P. Sternberg, On the heteroclinic connection problem for multi-well gradient systems, Journal of Differential Equations, 261 (2016), 3987-4007.  doi: 10.1016/j.jde.2016.06.010.

show all references

References:
[1]

S. AlamaL. Bronsard and C. Gui, Stationary layered solutions in $\mathbb{R}^2$ for an Allen-Cahn system with multiple well potential, Calc. Var., 5 (1997), 359-390.  doi: 10.1007/s005260050071.

[2]

S. Alama and Y. Li, On ''multibamp" bound states for certain semilinear elliptic equations, Ind. Uni. Math. Jour., 41 (1992), 983-1026.  doi: 10.1512/iumj.1992.41.41052.

[3]

G. AlbertiL. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: simmetry in 3D for general non linearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.  doi: 10.1023/A:1010602715526.

[4]

N. D. Alikakos, Some basic facts on the system $Δ u-W_u(u)=0$, Proc. Amer. Math. Soc., 139 (2011), 153-162.  doi: 10.1090/S0002-9939-2010-10453-7.

[5]

N. D. AlikakosS. I. Betelú and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energies, Eur. J. Appl. Math., 17 (2006), 525-556.  doi: 10.1017/S095679250600667X.

[6]

N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906.  doi: 10.1512/iumj.2008.57.3181.

[7]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves, Journal of the European Mathematical Society, 17 (2015), 1547-1567.  doi: 10.4171/JEMS/538.

[8]

N. D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications, Discr. Cont. Dynam. Syst., 35 (2015), 5631-5663.  doi: 10.3934/dcds.2015.35.5631.

[9]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, Amer. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.

[10]

P. W. Bates and X. Ren, Transition layers solutions of a higher order equation in an infinite tube, Comm. Part. Diff. Equat., 21 (1996), 195-220.  doi: 10.1080/03605309608821180.

[11]

P. W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures, preprint, arXiv: 1411.4008.

[12]

L. BronsardC. Gui and M. Schatzman, A three-layered minimizer in $\mathbb{R}^2$ for a variational problem with a symmetric three-well potential, Comm. Pure. Appl. Math., 49 (1996), 677-715.  doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO;2-6.

[13]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rat. Mech. Anal., 124 (1993), 355-379.  doi: 10.1007/BF00375607.

[14]

J. Carr and B. Pego, Metastable patterns in solutions of $u_t=ε^2 u_{xx}-f(u)$, Comm. Pure. Appl. Math., 42 (1989), 523-576.  doi: 10.1002/cpa.3160420502.

[15]

M. Del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N≥q 9$, Annal. Math., 174 (2011), 1485-1569.  doi: 10.4007/annals.2011.174.3.3.

[16]

A. Farina, Symmetry for solutions of semilinear elliptic equations in $\mathbb{R}^N$ and related conjectures, Rend. Mat. Acc. Lincei., 10 (1999), 255-265. 

[17]

A. Farina, On the classification of entire local minimizers of the Ginzburg-Landau equation, Contemp. Math., 595 (2013), 231-236.  doi: 10.1090/conm/595/11786.

[18]

A. FarinaB. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791. 

[19]

M. Fazly and N. Ghoussouby, De Giorgi type results for elliptic systems, Calc. Var. PDE, 47 (2013), 809-823.  doi: 10.1007/s00526-012-0536-x.

[20]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060.  doi: 10.3934/cpaa.2014.13.1045.

[21]

N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights an unique continuation, Indiana Univ. Math. J., 35 (1986), 245-267.  doi: 10.1512/iumj.1986.35.35015.

[22]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.  doi: 10.1007/s002080050196.

[23]

N. Ghoussoub and C. Gui, On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math., 157 (2003), 313-334.  doi: 10.4007/annals.2003.157.313.

[24]

C. Gui, Hamiltonian identities for elliptic differential equations, J. Funct. Anal., 254 (2008), 904-933.  doi: 10.1016/j.jfa.2007.10.015.

[25]

C. GuiA. Malchiodi and H. Xu, Axial symmetry of some steady state solutions to nonlinear Schrdinger equations, Proc. Amer. Math. Soc., 139 (2011), 1023-1032.  doi: 10.1090/S0002-9939-2010-10638-X.

[26]

C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Ind. Univ. Math. J., 57 (2008), 781-836.  doi: 10.1512/iumj.2008.57.3089.

[27]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. 840,1980.

[28]

A. Monteil and F. Santambrogio, Metric methods for heteroclinic connections Mathematical Methods in the Applied Sciences. doi: 10.1002/mma.4072.

[29]

P. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations, Jour. Math. Sci. Uni. Tokyo, 2 (1994), 525-550. 

[30]

W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Math. , 1973.

[31]

O. Savin, Regularity of level sets in phase transitions, Ann. Math., 169 (2009), 41-78.  doi: 10.4007/annals.2009.169.41.

[32]

M. Schatzman, Asymmetric heteroclinic double layers, ESAIM Control Optim. Calc. Var. , 8 (2002), 965–1005 (A tribute to J. L. Lions). doi: 10.1051/cocv:2002039.

[33]

N. Soave and S. Terracini, Liouville theorems and 1-dimensional symmetry for solutions of an elliptic system modeling phase separation, Adv. Math., 279 (2015), 29-66.  doi: 10.1016/j.aim.2015.03.015.

[34]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterranean Journal of Mathematics, 13 (2016), 4693-4710.  doi: 10.1007/s00009-016-0770-0.

[35]

A. Zuniga and P. Sternberg, On the heteroclinic connection problem for multi-well gradient systems, Journal of Differential Equations, 261 (2016), 3987-4007.  doi: 10.1016/j.jde.2016.06.010.

[1]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[2]

Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155

[3]

François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101

[4]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[5]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[6]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[7]

Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. Effective Hamiltonian dynamics via the Maupertuis principle. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1395-1410. doi: 10.3934/dcdss.2020078

[8]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[9]

Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769

[10]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[11]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[12]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[13]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure and Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[14]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[15]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[16]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[17]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure and Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[18]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[19]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (188)
  • HTML views (85)
  • Cited by (2)

Other articles
by authors

[Back to Top]