We consider the 2D simplified Bardina turbulence model, with horizontal filtering, in an unbounded strip-like domain. We prove global existence and uniqueness of weak solutions in a suitable class of anisotropic weighted Sobolev spaces.
Citation: |
[1] |
F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Diff. Equ., 83 (1990), 36-54.
doi: 10.1016/0022-0396(90)90070-6.![]() ![]() ![]() |
[2] |
H. Ali, Approximate deconvolution model in a bounded domain with vertical regularization, J. Math. Anal. App., 408 (2013), 355-363.
doi: 10.1016/j.jmaa.2013.06.023.![]() ![]() ![]() |
[3] |
C. T. Anh and P. T. Trang, On the 3D Kelvin-Voigt-Brinkman-Forchheimer equations in some unbounded domains, Nonlinear Anal., 89 (2013), 36-54.
doi: 10.1016/j.na.2013.04.014.![]() ![]() ![]() |
[4] |
P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Commun. Pure Appl. Anal., 13 (2004), 1361-1393.
doi: 10.3934/cpaa.2014.13.1361.![]() ![]() ![]() |
[5] |
A. V. Babin, The Attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dyn. Diff. Equ., 4 (1992), 555-584.
doi: 10.1007/BF01048260.![]() ![]() ![]() |
[6] |
A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.
doi: 10.1017/S0308210500031498.![]() ![]() ![]() |
[7] |
J. Bardina, J. H. Ferziger and W. C. Reynolds, Improved subgrid scale models for large eddy simulation, American Institute of Aeronautics and Astronautics, 80 (1980), AIAA, 80-1357.
![]() |
[8] |
L. C. Berselli, Analysis of a large eddy simulation model based on anisotropic filtering, J. Math. Anal. Appl., 386 (2012), 149-170.
doi: 10.1016/j.jmaa.2011.07.044.![]() ![]() ![]() |
[9] |
L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.
doi: 10.1016/j.na.2011.08.011.![]() ![]() ![]() |
[10] |
L. C. Berselli and D. Catania, On the Boussinesq equations with anisotropic filter in a vertical pipe, Dyn. Partial Differ. Equ., 12 (2015), 177-192.
doi: 10.4310/DPDE.2015.v12.n2.a5.![]() ![]() ![]() |
[11] |
L. C. Berselli and D. Catania, On the well-posedness of the Boussinesq equations with anisotropic filter for turbulent flows, Z. Anal. Anwend., 34 (2015), 61-83.
doi: 10.4171/ZAA/1529.![]() ![]() ![]() |
[12] |
L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, Math. Methods Appl. Sci., 38 (2015), 1437-1450.
doi: 10.1002/mma.3160.![]() ![]() ![]() |
[13] |
L. Bisconti and D. Catania, Remarks on global attractors for the 3D Navier-Stokes equations with horizontal filtering, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 59-75.
doi: 10.3934/dcdsb.2015.20.59.![]() ![]() ![]() |
[14] |
L. Bisconti and P. M. Mariano, Existence results in the linear dynamics of quasicrystals with phason diffusion and nonlinear gyroscopic effects, Multiscale Model. Simul., 15 (2017), no. 2,745-767.
doi: 10.1137/15M1049580.![]() ![]() |
[15] |
C. Cao, D. D. Holm and E. S. Titi, On the Clark-α model of turbulence: global regularity and long-time dynamics, J. Turbul., 6 (2005), paper 20, 11 pp.
doi: 10.1080/14685240500183756.![]() ![]() ![]() |
[16] |
Y. Cao, E. M. Lunasin and E. S. Titi, Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.
![]() ![]() |
[17] |
Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional $α$-models of turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim., 30 (2009), 1231-1271.
doi: 10.1080/01630560903439189.![]() ![]() ![]() |
[18] |
D. Catania, A. Morando and P. Trebeschi, Global attractor for the Navier-Stokes equations with fractional deconvolution, Nonlinear Differ. Equ. Appl., 22 (2015), 811-848.
doi: 10.1007/s00030-014-0305-y.![]() ![]() ![]() |
[19] |
A. O. Çelebi, V. K. Kalantarov and M. Polat, Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Appl. Anal., 88 (2009), 381-392.
doi: 10.1080/00036810902766682.![]() ![]() ![]() |
[20] |
A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.
doi: 10.1098/rspa.2004.1373.![]() ![]() ![]() |
[21] |
M. A. Efendiev and S. V. Zelik, The attractor for nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.
doi: 10.1002/cpa.1011.![]() ![]() ![]() |
[22] |
C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differ. Equ., 14 (2002), 1-35.
doi: 10.1023/A:1012984210582.![]() ![]() ![]() |
[23] |
M. J. Garrido-Atienza and P. Mariń-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.
doi: 10.1016/j.na.2005.05.057.![]() ![]() ![]() |
[24] |
F. Gazzola and V. Pata, A uniform attractor for a non-autonomous generalized Navier-Stokes equation, J. Anal. Appl., 16 (1997), 435-449.
doi: 10.4171/ZAA/771.![]() ![]() ![]() |
[25] |
M. Germano, Differential filters for the large eddy simulation of turbulent flows, Phys. Fluids, 29 (1986), 1755-1757.
doi: 10.1063/1.865649.![]() ![]() ![]() |
[26] |
A. A. Ilyin, E. M. Lunasin and E. S. Titi, A modified-Leray-$α$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.
doi: 10.1088/0951-7715/19/4/006.![]() ![]() ![]() |
[27] |
W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions, App. Math. Letters, 16 (2003), 1205-1209.
doi: 10.1016/S0893-9659(03)90118-2.![]() ![]() ![]() |
[28] |
W. Layton and R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 111-128.
![]() ![]() |
[29] |
W. J. Layton, C. C. Manica, M. Neda and L. G. Rebholz, Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations, Comput. Methods Appl. Mech. Engr., 199 (2010), 916-931.
doi: 10.1016/j.cma.2009.01.011.![]() ![]() ![]() |
[30] |
A. Miranville and S. Zelik,
Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Handbook of differential equations: evolutionary equations, Vol. Ⅳ, 103-200, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00003-0.![]() ![]() ![]() |
[31] |
M. Polat, Global attractors for a generalized 2D parabolic system in an unbounded domain, Appl. Anal., 88 (2009), 63-74.
doi: 10.1080/00036810802555508.![]() ![]() ![]() |
[32] |
L. G. Rebholz, Conservation laws of turbulence models, J. Math. Anal. Appl., 326 (2007), 33-45.
doi: 10.1016/j.jmaa.2006.02.026.![]() ![]() ![]() |
[33] |
J. Simon,
Equations de Navier-Stokes, Cours de DEA 2002-2003, Universiteé Blaise Pascal, Clermont-Ferrand, Available from: URL http://www.lma.univ-bpclermont.fr/simon/.
![]() |
[34] |
R. Temam,
Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[35] |
S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.
doi: 10.1017/S0017089507003849.![]() ![]() ![]() |