September  2017, 16(5): 1861-1881. doi: 10.3934/cpaa.2017090

Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region

1. 

Universitá degli Studi di Firenze, Dipartimento di Matematica e Informatica "U. Dini", Via S. Marta 3, I-50139 Firenze, Italia

2. 

SMARTest-Universitá eCampus and Universitá degli Studi di Brescia, Sezione Matematica (DICATAM), Via Valotti 9, I-25133 Brescia, Italia

Received  December 2016 Revised  January 2017 Published  May 2017

We consider the 2D simplified Bardina turbulence model, with horizontal filtering, in an unbounded strip-like domain. We prove global existence and uniqueness of weak solutions in a suitable class of anisotropic weighted Sobolev spaces.

Citation: Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Diff. Equ., 83 (1990), 36-54.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

H. Ali, Approximate deconvolution model in a bounded domain with vertical regularization, J. Math. Anal. App., 408 (2013), 355-363.  doi: 10.1016/j.jmaa.2013.06.023.  Google Scholar

[3]

C. T. Anh and P. T. Trang, On the 3D Kelvin-Voigt-Brinkman-Forchheimer equations in some unbounded domains, Nonlinear Anal., 89 (2013), 36-54.  doi: 10.1016/j.na.2013.04.014.  Google Scholar

[4]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Commun. Pure Appl. Anal., 13 (2004), 1361-1393.  doi: 10.3934/cpaa.2014.13.1361.  Google Scholar

[5]

A. V. Babin, The Attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dyn. Diff. Equ., 4 (1992), 555-584.  doi: 10.1007/BF01048260.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[7]

J. BardinaJ. H. Ferziger and W. C. Reynolds, Improved subgrid scale models for large eddy simulation, American Institute of Aeronautics and Astronautics, 80 (1980), AIAA, 80-1357.   Google Scholar

[8]

L. C. Berselli, Analysis of a large eddy simulation model based on anisotropic filtering, J. Math. Anal. Appl., 386 (2012), 149-170.  doi: 10.1016/j.jmaa.2011.07.044.  Google Scholar

[9]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[10]

L. C. Berselli and D. Catania, On the Boussinesq equations with anisotropic filter in a vertical pipe, Dyn. Partial Differ. Equ., 12 (2015), 177-192.  doi: 10.4310/DPDE.2015.v12.n2.a5.  Google Scholar

[11]

L. C. Berselli and D. Catania, On the well-posedness of the Boussinesq equations with anisotropic filter for turbulent flows, Z. Anal. Anwend., 34 (2015), 61-83.  doi: 10.4171/ZAA/1529.  Google Scholar

[12]

L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, Math. Methods Appl. Sci., 38 (2015), 1437-1450.  doi: 10.1002/mma.3160.  Google Scholar

[13]

L. Bisconti and D. Catania, Remarks on global attractors for the 3D Navier-Stokes equations with horizontal filtering, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 59-75.  doi: 10.3934/dcdsb.2015.20.59.  Google Scholar

[14]

L. Bisconti and P. M. Mariano, Existence results in the linear dynamics of quasicrystals with phason diffusion and nonlinear gyroscopic effects, Multiscale Model. Simul., 15 (2017), no. 2,745-767.  doi: 10.1137/15M1049580.  Google Scholar

[15]

C. CaoD. D. Holm and E. S. Titi, On the Clark-α model of turbulence: global regularity and long-time dynamics, J. Turbul., 6 (2005), paper 20, 11 pp.  doi: 10.1080/14685240500183756.  Google Scholar

[16]

Y. CaoE. M. Lunasin and E. S. Titi, Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.   Google Scholar

[17]

Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional $α$-models of turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim., 30 (2009), 1231-1271.  doi: 10.1080/01630560903439189.  Google Scholar

[18]

D. CataniaA. Morando and P. Trebeschi, Global attractor for the Navier-Stokes equations with fractional deconvolution, Nonlinear Differ. Equ. Appl., 22 (2015), 811-848.  doi: 10.1007/s00030-014-0305-y.  Google Scholar

[19]

A. O. ÇelebiV. K. Kalantarov and M. Polat, Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Appl. Anal., 88 (2009), 381-392.  doi: 10.1080/00036810902766682.  Google Scholar

[20]

A. CheskidovD. D. HolmE. Olson and E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.  doi: 10.1098/rspa.2004.1373.  Google Scholar

[21]

M. A. Efendiev and S. V. Zelik, The attractor for nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[22]

C. FoiasD. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differ. Equ., 14 (2002), 1-35.  doi: 10.1023/A:1012984210582.  Google Scholar

[23]

M. J. Garrido-Atienza and P. Mariń-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.  Google Scholar

[24]

F. Gazzola and V. Pata, A uniform attractor for a non-autonomous generalized Navier-Stokes equation, J. Anal. Appl., 16 (1997), 435-449.  doi: 10.4171/ZAA/771.  Google Scholar

[25]

M. Germano, Differential filters for the large eddy simulation of turbulent flows, Phys. Fluids, 29 (1986), 1755-1757.  doi: 10.1063/1.865649.  Google Scholar

[26]

A. A. IlyinE. M. Lunasin and E. S. Titi, A modified-Leray-$α$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.  doi: 10.1088/0951-7715/19/4/006.  Google Scholar

[27]

W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions, App. Math. Letters, 16 (2003), 1205-1209.  doi: 10.1016/S0893-9659(03)90118-2.  Google Scholar

[28]

W. Layton and R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 111-128.   Google Scholar

[29]

W. J. LaytonC. C. ManicaM. Neda and L. G. Rebholz, Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations, Comput. Methods Appl. Mech. Engr., 199 (2010), 916-931.  doi: 10.1016/j.cma.2009.01.011.  Google Scholar

[30]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Handbook of differential equations: evolutionary equations, Vol. Ⅳ, 103-200, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[31]

M. Polat, Global attractors for a generalized 2D parabolic system in an unbounded domain, Appl. Anal., 88 (2009), 63-74.  doi: 10.1080/00036810802555508.  Google Scholar

[32]

L. G. Rebholz, Conservation laws of turbulence models, J. Math. Anal. Appl., 326 (2007), 33-45.  doi: 10.1016/j.jmaa.2006.02.026.  Google Scholar

[33]

J. Simon, Equations de Navier-Stokes, Cours de DEA 2002-2003, Universiteé Blaise Pascal, Clermont-Ferrand, Available from: URL http://www.lma.univ-bpclermont.fr/simon/. Google Scholar

[34]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.  doi: 10.1017/S0017089507003849.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Diff. Equ., 83 (1990), 36-54.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

H. Ali, Approximate deconvolution model in a bounded domain with vertical regularization, J. Math. Anal. App., 408 (2013), 355-363.  doi: 10.1016/j.jmaa.2013.06.023.  Google Scholar

[3]

C. T. Anh and P. T. Trang, On the 3D Kelvin-Voigt-Brinkman-Forchheimer equations in some unbounded domains, Nonlinear Anal., 89 (2013), 36-54.  doi: 10.1016/j.na.2013.04.014.  Google Scholar

[4]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Commun. Pure Appl. Anal., 13 (2004), 1361-1393.  doi: 10.3934/cpaa.2014.13.1361.  Google Scholar

[5]

A. V. Babin, The Attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dyn. Diff. Equ., 4 (1992), 555-584.  doi: 10.1007/BF01048260.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[7]

J. BardinaJ. H. Ferziger and W. C. Reynolds, Improved subgrid scale models for large eddy simulation, American Institute of Aeronautics and Astronautics, 80 (1980), AIAA, 80-1357.   Google Scholar

[8]

L. C. Berselli, Analysis of a large eddy simulation model based on anisotropic filtering, J. Math. Anal. Appl., 386 (2012), 149-170.  doi: 10.1016/j.jmaa.2011.07.044.  Google Scholar

[9]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[10]

L. C. Berselli and D. Catania, On the Boussinesq equations with anisotropic filter in a vertical pipe, Dyn. Partial Differ. Equ., 12 (2015), 177-192.  doi: 10.4310/DPDE.2015.v12.n2.a5.  Google Scholar

[11]

L. C. Berselli and D. Catania, On the well-posedness of the Boussinesq equations with anisotropic filter for turbulent flows, Z. Anal. Anwend., 34 (2015), 61-83.  doi: 10.4171/ZAA/1529.  Google Scholar

[12]

L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, Math. Methods Appl. Sci., 38 (2015), 1437-1450.  doi: 10.1002/mma.3160.  Google Scholar

[13]

L. Bisconti and D. Catania, Remarks on global attractors for the 3D Navier-Stokes equations with horizontal filtering, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 59-75.  doi: 10.3934/dcdsb.2015.20.59.  Google Scholar

[14]

L. Bisconti and P. M. Mariano, Existence results in the linear dynamics of quasicrystals with phason diffusion and nonlinear gyroscopic effects, Multiscale Model. Simul., 15 (2017), no. 2,745-767.  doi: 10.1137/15M1049580.  Google Scholar

[15]

C. CaoD. D. Holm and E. S. Titi, On the Clark-α model of turbulence: global regularity and long-time dynamics, J. Turbul., 6 (2005), paper 20, 11 pp.  doi: 10.1080/14685240500183756.  Google Scholar

[16]

Y. CaoE. M. Lunasin and E. S. Titi, Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.   Google Scholar

[17]

Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional $α$-models of turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim., 30 (2009), 1231-1271.  doi: 10.1080/01630560903439189.  Google Scholar

[18]

D. CataniaA. Morando and P. Trebeschi, Global attractor for the Navier-Stokes equations with fractional deconvolution, Nonlinear Differ. Equ. Appl., 22 (2015), 811-848.  doi: 10.1007/s00030-014-0305-y.  Google Scholar

[19]

A. O. ÇelebiV. K. Kalantarov and M. Polat, Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Appl. Anal., 88 (2009), 381-392.  doi: 10.1080/00036810902766682.  Google Scholar

[20]

A. CheskidovD. D. HolmE. Olson and E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.  doi: 10.1098/rspa.2004.1373.  Google Scholar

[21]

M. A. Efendiev and S. V. Zelik, The attractor for nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[22]

C. FoiasD. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differ. Equ., 14 (2002), 1-35.  doi: 10.1023/A:1012984210582.  Google Scholar

[23]

M. J. Garrido-Atienza and P. Mariń-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.  Google Scholar

[24]

F. Gazzola and V. Pata, A uniform attractor for a non-autonomous generalized Navier-Stokes equation, J. Anal. Appl., 16 (1997), 435-449.  doi: 10.4171/ZAA/771.  Google Scholar

[25]

M. Germano, Differential filters for the large eddy simulation of turbulent flows, Phys. Fluids, 29 (1986), 1755-1757.  doi: 10.1063/1.865649.  Google Scholar

[26]

A. A. IlyinE. M. Lunasin and E. S. Titi, A modified-Leray-$α$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.  doi: 10.1088/0951-7715/19/4/006.  Google Scholar

[27]

W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions, App. Math. Letters, 16 (2003), 1205-1209.  doi: 10.1016/S0893-9659(03)90118-2.  Google Scholar

[28]

W. Layton and R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 111-128.   Google Scholar

[29]

W. J. LaytonC. C. ManicaM. Neda and L. G. Rebholz, Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations, Comput. Methods Appl. Mech. Engr., 199 (2010), 916-931.  doi: 10.1016/j.cma.2009.01.011.  Google Scholar

[30]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Handbook of differential equations: evolutionary equations, Vol. Ⅳ, 103-200, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[31]

M. Polat, Global attractors for a generalized 2D parabolic system in an unbounded domain, Appl. Anal., 88 (2009), 63-74.  doi: 10.1080/00036810802555508.  Google Scholar

[32]

L. G. Rebholz, Conservation laws of turbulence models, J. Math. Anal. Appl., 326 (2007), 33-45.  doi: 10.1016/j.jmaa.2006.02.026.  Google Scholar

[33]

J. Simon, Equations de Navier-Stokes, Cours de DEA 2002-2003, Universiteé Blaise Pascal, Clermont-Ferrand, Available from: URL http://www.lma.univ-bpclermont.fr/simon/. Google Scholar

[34]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.  doi: 10.1017/S0017089507003849.  Google Scholar

[1]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[2]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[3]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[4]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[5]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[6]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[7]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[8]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[9]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[10]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[11]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[12]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[13]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[14]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[15]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[16]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[17]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[18]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[19]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[20]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (15)
  • Cited by (2)

Other articles
by authors

[Back to Top]