
-
Previous Article
Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case
- CPAA Home
- This Issue
-
Next Article
Global dynamics of a microorganism flocculation model with time delay
Dynamics of some stochastic chemostat models with multiplicative noise
Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n. Sevilla, 41012, Spain |
In this paper we study two stochastic chemostat models, with and without wall growth, driven by a white noise. Specifically, we analyze the existence and uniqueness of solutions for these models, as well as the existence of the random attractor associated to the random dynamical system generated by the solution. The analysis will be carried out by means of the well-known Ornstein-Uhlenbeck process, that allows us to transform our stochastic chemostat models into random ones.
References:
[1] |
L. Arnold, Random Dynamical Systems, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() |
[2] |
H. R. Bungay and M. L. Bungay, Microbial interactions in continuous culture, Advances in Applied Microbiology, 10 (1968), 269-290. Google Scholar |
[3] |
T. Caraballo,
Recent results on stabilization of PDEs by noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70.
|
[4] |
T. Caraballo, M. J. Garrido-Atienza and J. López-de-la-Cruz, Some aspects concerning the dynamics of stochastic chemostats, Advances in Dynamical Systems and Control, Ⅱ, Studies in Systems, Decision and Control, vol. 69, Springer International Publishing, Cham, (2016), 227-246. |
[5] |
T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete and Continuous Dynamical Systems Series B, 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439. |
[6] |
T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, Springer, 2016.
doi: 10.1007/978-3-319-49247-6. |
[7] |
T. Caraballo, X. Han and P. E. Kloeden,
Chemostats with time-dependent inputs and wall growth, Applied Mathematics and Information Sciences, 9 (2015), 2283-2296.
|
[8] |
T. Caraballo, X. Han and P. E. Kloeden,
Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 38 (2015), 3538-3550.
doi: 10.1002/mma.3437. |
[9] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß,
Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Applied Mathematics & Optimization, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1. |
[10] |
T. Caraballo and K. Lu,
Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[11] |
T. Caraballo, G. Lukaszewicz and J. Real,
Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis TMA, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[12] |
A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous cultures, Mathematics in Microbiology, Academic Press, London, (1983), 77-103. |
[13] |
G. D'ans, P. V. Kokotovic and D. Gottlieb,
A nonlinear regulator problem for a model of biological waste treatment, IEEE Transactions on Automatic Control, AC-16 (1971), 341-347.
|
[14] |
F. Flandoli and B. Schmalfuß,
Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
|
[15] |
D. Foster and P. Young,
Stochastic evolutionary game dynamics, Theor. Pop. Biol., 38 (1990), 219-232.
doi: 10.1016/0040-5809(90)90011-J. |
[16] |
A. G. Fredrickson and G. Stephanopoulos,
Microbial competition, Science, 213 (1981), 972-979.
doi: 10.1126/science.7268409. |
[17] |
R. Freter, Mechanisms that control the microflora in the large intestine, Human Intestinal microflora in Health and Disease, J. Hentges, ed. , Academic Press, New York, (1983), 33-54. Google Scholar |
[18] |
R. Freter, An understanding of colonization of the large intestine requires mathematical analysis, Microecology and Therapy, 16 (1986), 147-155. Google Scholar |
[19] |
D. Fudenberg and C. Harris,
Evolutionary dynamics with aggregate shocks, J. Econom. Theory, 57 (1992), 420-441.
doi: 10.1016/0022-0531(92)90044-Ⅰ. |
[20] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[21] |
J. Hofbauer and L. A. Imhof,
Time averages, recurrence and transience in the stochastic replicator dynamics, Ann. Appl. Probab., 19 (2009), 1347-1368.
doi: 10.1214/08-AAP577. |
[22] |
L. Imhof and S. Walcher,
Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 217 (2005), 26-53.
doi: 10.1016/j.jde.2005.06.017. |
[23] |
H. W. Jannash and R. T. Mateles, Experimental bacterial ecology studies in continuous culture, Advances in Microbial Physiology, 11 (1974), 165-212. Google Scholar |
[24] |
R. Khasminskii and N. Potsepun,
On the replicator dynamics behavior under Stratonovich type random perturbations, Stoch. Dyn., 6 (2006), 197-211.
doi: 10.1142/S0219493706001712. |
[25] |
J. W. M. La Riviere, Microbial ecology of liquid waste, Advances in Microbial Ecology, 1 (1977), 215-259. Google Scholar |
[26] |
H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41 (1995). American Mathematical Society, Providence, RI |
[27] |
H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[28] |
V. Sree Hari Rao and P. Raja Sekhara Rao, Dynamic Models and Control of Biological Systems, Springer-Verlag, Heidelberg, 2009.
![]() |
[29] |
P. A. Taylor and J. L. Williams, Theoretical studies on the coexistence of competing species under contunous flow conditions, Canadian Journal of Microbiology, 21 (1975), 90-98. Google Scholar |
[30] |
M. Turelli,
Random environments and stochastic calculus, Theoret. Population Biology, 12 (1977), 140-178.
|
[31] |
H. Veldcamp, Ecological studies with the chemostat, Advances in Microbial Ecology, 1 (1977), 59-95. Google Scholar |
[32] |
P. Waltman, Competition models in population biology, CBMS-NSF Regional Conference Series in Applied Mathematics, 45 Society for Industrial and Applied Mathematics, Philadelphia, 1983.
doi: 10.1137/1.9781611970258. |
[33] |
P. Waltman,
Coexistence in chemostat-like model, Rocky Mountain Journal of Mathematics, 20 (1990), 777-807.
doi: 10.1216/rmjm/1181073042. |
[34] |
P. Waltman, S. P. Hubbel and S. B. Hsu, Theoretical and experimental investigations of microbial competition in continuous culture, Modeling and Differential Equations in Biology (Conf. , southern Illinois Univ. Carbonadle, Ⅲ. , 1978), (1980) pp. 107-152. Lecture Notes in Pure and Appl. Math. , 58, Dekker, New York. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() |
[2] |
H. R. Bungay and M. L. Bungay, Microbial interactions in continuous culture, Advances in Applied Microbiology, 10 (1968), 269-290. Google Scholar |
[3] |
T. Caraballo,
Recent results on stabilization of PDEs by noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70.
|
[4] |
T. Caraballo, M. J. Garrido-Atienza and J. López-de-la-Cruz, Some aspects concerning the dynamics of stochastic chemostats, Advances in Dynamical Systems and Control, Ⅱ, Studies in Systems, Decision and Control, vol. 69, Springer International Publishing, Cham, (2016), 227-246. |
[5] |
T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete and Continuous Dynamical Systems Series B, 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439. |
[6] |
T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, Springer, 2016.
doi: 10.1007/978-3-319-49247-6. |
[7] |
T. Caraballo, X. Han and P. E. Kloeden,
Chemostats with time-dependent inputs and wall growth, Applied Mathematics and Information Sciences, 9 (2015), 2283-2296.
|
[8] |
T. Caraballo, X. Han and P. E. Kloeden,
Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 38 (2015), 3538-3550.
doi: 10.1002/mma.3437. |
[9] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß,
Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Applied Mathematics & Optimization, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1. |
[10] |
T. Caraballo and K. Lu,
Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[11] |
T. Caraballo, G. Lukaszewicz and J. Real,
Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis TMA, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[12] |
A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous cultures, Mathematics in Microbiology, Academic Press, London, (1983), 77-103. |
[13] |
G. D'ans, P. V. Kokotovic and D. Gottlieb,
A nonlinear regulator problem for a model of biological waste treatment, IEEE Transactions on Automatic Control, AC-16 (1971), 341-347.
|
[14] |
F. Flandoli and B. Schmalfuß,
Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
|
[15] |
D. Foster and P. Young,
Stochastic evolutionary game dynamics, Theor. Pop. Biol., 38 (1990), 219-232.
doi: 10.1016/0040-5809(90)90011-J. |
[16] |
A. G. Fredrickson and G. Stephanopoulos,
Microbial competition, Science, 213 (1981), 972-979.
doi: 10.1126/science.7268409. |
[17] |
R. Freter, Mechanisms that control the microflora in the large intestine, Human Intestinal microflora in Health and Disease, J. Hentges, ed. , Academic Press, New York, (1983), 33-54. Google Scholar |
[18] |
R. Freter, An understanding of colonization of the large intestine requires mathematical analysis, Microecology and Therapy, 16 (1986), 147-155. Google Scholar |
[19] |
D. Fudenberg and C. Harris,
Evolutionary dynamics with aggregate shocks, J. Econom. Theory, 57 (1992), 420-441.
doi: 10.1016/0022-0531(92)90044-Ⅰ. |
[20] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[21] |
J. Hofbauer and L. A. Imhof,
Time averages, recurrence and transience in the stochastic replicator dynamics, Ann. Appl. Probab., 19 (2009), 1347-1368.
doi: 10.1214/08-AAP577. |
[22] |
L. Imhof and S. Walcher,
Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 217 (2005), 26-53.
doi: 10.1016/j.jde.2005.06.017. |
[23] |
H. W. Jannash and R. T. Mateles, Experimental bacterial ecology studies in continuous culture, Advances in Microbial Physiology, 11 (1974), 165-212. Google Scholar |
[24] |
R. Khasminskii and N. Potsepun,
On the replicator dynamics behavior under Stratonovich type random perturbations, Stoch. Dyn., 6 (2006), 197-211.
doi: 10.1142/S0219493706001712. |
[25] |
J. W. M. La Riviere, Microbial ecology of liquid waste, Advances in Microbial Ecology, 1 (1977), 215-259. Google Scholar |
[26] |
H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41 (1995). American Mathematical Society, Providence, RI |
[27] |
H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[28] |
V. Sree Hari Rao and P. Raja Sekhara Rao, Dynamic Models and Control of Biological Systems, Springer-Verlag, Heidelberg, 2009.
![]() |
[29] |
P. A. Taylor and J. L. Williams, Theoretical studies on the coexistence of competing species under contunous flow conditions, Canadian Journal of Microbiology, 21 (1975), 90-98. Google Scholar |
[30] |
M. Turelli,
Random environments and stochastic calculus, Theoret. Population Biology, 12 (1977), 140-178.
|
[31] |
H. Veldcamp, Ecological studies with the chemostat, Advances in Microbial Ecology, 1 (1977), 59-95. Google Scholar |
[32] |
P. Waltman, Competition models in population biology, CBMS-NSF Regional Conference Series in Applied Mathematics, 45 Society for Industrial and Applied Mathematics, Philadelphia, 1983.
doi: 10.1137/1.9781611970258. |
[33] |
P. Waltman,
Coexistence in chemostat-like model, Rocky Mountain Journal of Mathematics, 20 (1990), 777-807.
doi: 10.1216/rmjm/1181073042. |
[34] |
P. Waltman, S. P. Hubbel and S. B. Hsu, Theoretical and experimental investigations of microbial competition in continuous culture, Modeling and Differential Equations in Biology (Conf. , southern Illinois Univ. Carbonadle, Ⅲ. , 1978), (1980) pp. 107-152. Lecture Notes in Pure and Appl. Math. , 58, Dekker, New York. |






ASYMPTOTIC BOUNDS | ATTRACTOR INTERNAL STRUCTURE | ||
Case A: |
(A-1) |
![]() |
|
(A-2) |
![]() |
||
Case B: |
(B-1) |
![]() |
|
(B-2) |
![]() | ||
ASYMPTOTIC BOUNDS | ATTRACTOR INTERNAL STRUCTURE | ||
Case A: |
(A-1) |
![]() |
|
(A-2) |
![]() |
||
Case B: |
(B-1) |
![]() |
|
(B-2) |
![]() | ||
ASYMPTOTIC BOUNDS | ATTRACTOR INTERNAL STRUCTURE | ||
Case A: |
(A-1) |
![]() |
|
(A-2) |
![]() |
||
Case B: |
(B-1) |
![]() |
|
(B-2) |
![]() | ||
ASYMPTOTIC BOUNDS | ATTRACTOR INTERNAL STRUCTURE | ||
Case A: |
(A-1) |
![]() |
|
(A-2) |
![]() |
||
Case B: |
(B-1) |
![]() |
|
(B-2) |
![]() | ||
[1] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[2] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[3] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[4] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[5] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[6] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[7] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[8] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[9] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[10] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[11] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[12] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[13] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[14] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[15] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[16] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[17] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[18] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[19] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[20] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]