[1]
|
L. Arnold, Random Dynamical Systems, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.
|
[2]
|
H. R. Bungay and M. L. Bungay, Microbial interactions in continuous culture, Advances in Applied Microbiology, 10 (1968), 269-290.
|
[3]
|
T. Caraballo, Recent results on stabilization of PDEs by noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70.
|
[4]
|
T. Caraballo, M. J. Garrido-Atienza and J. López-de-la-Cruz, Some aspects concerning the dynamics of stochastic chemostats, Advances in Dynamical Systems and Control, Ⅱ, Studies in Systems, Decision and Control, vol. 69, Springer International Publishing, Cham, (2016), 227-246.
|
[5]
|
T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuß and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete and Continuous Dynamical Systems Series B, 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439.
|
[6]
|
T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, Springer, 2016.
doi: 10.1007/978-3-319-49247-6.
|
[7]
|
T. Caraballo, X. Han and P. E. Kloeden, Chemostats with time-dependent inputs and wall growth, Applied Mathematics and Information Sciences, 9 (2015), 2283-2296.
|
[8]
|
T. Caraballo, X. Han and P. E. Kloeden, Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 38 (2015), 3538-3550.
doi: 10.1002/mma.3437.
|
[9]
|
T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Applied Mathematics & Optimization, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1.
|
[10]
|
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7.
|
[11]
|
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis TMA, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111.
|
[12]
|
A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous cultures, Mathematics in Microbiology, Academic Press, London, (1983), 77-103.
|
[13]
|
G. D'ans, P. V. Kokotovic and D. Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Transactions on Automatic Control, AC-16 (1971), 341-347.
|
[14]
|
F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
|
[15]
|
D. Foster and P. Young, Stochastic evolutionary game dynamics, Theor. Pop. Biol., 38 (1990), 219-232.
doi: 10.1016/0040-5809(90)90011-J.
|
[16]
|
A. G. Fredrickson and G. Stephanopoulos, Microbial competition, Science, 213 (1981), 972-979.
doi: 10.1126/science.7268409.
|
[17]
|
R. Freter, Mechanisms that control the microflora in the large intestine, Human Intestinal microflora in Health and Disease, J. Hentges, ed. , Academic Press, New York, (1983), 33-54.
|
[18]
|
R. Freter, An understanding of colonization of the large intestine requires mathematical analysis, Microecology and Therapy, 16 (1986), 147-155.
|
[19]
|
D. Fudenberg and C. Harris, Evolutionary dynamics with aggregate shocks, J. Econom. Theory, 57 (1992), 420-441.
doi: 10.1016/0022-0531(92)90044-Ⅰ.
|
[20]
|
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.
doi: 10.1137/S0036144500378302.
|
[21]
|
J. Hofbauer and L. A. Imhof, Time averages, recurrence and transience in the stochastic replicator dynamics, Ann. Appl. Probab., 19 (2009), 1347-1368.
doi: 10.1214/08-AAP577.
|
[22]
|
L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 217 (2005), 26-53.
doi: 10.1016/j.jde.2005.06.017.
|
[23]
|
H. W. Jannash and R. T. Mateles, Experimental bacterial ecology studies in continuous culture, Advances in Microbial Physiology, 11 (1974), 165-212.
|
[24]
|
R. Khasminskii and N. Potsepun, On the replicator dynamics behavior under Stratonovich type random perturbations, Stoch. Dyn., 6 (2006), 197-211.
doi: 10.1142/S0219493706001712.
|
[25]
|
J. W. M. La Riviere, Microbial ecology of liquid waste, Advances in Microbial Ecology, 1 (1977), 215-259.
|
[26]
|
H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41 (1995). American Mathematical Society, Providence, RI
|
[27]
|
H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511530043.
|
[28]
|
V. Sree Hari Rao and P. Raja Sekhara Rao, Dynamic Models and Control of Biological Systems, Springer-Verlag, Heidelberg, 2009.
|
[29]
|
P. A. Taylor and J. L. Williams, Theoretical studies on the coexistence of competing species under contunous flow conditions, Canadian Journal of Microbiology, 21 (1975), 90-98.
|
[30]
|
M. Turelli, Random environments and stochastic calculus, Theoret. Population Biology, 12 (1977), 140-178.
|
[31]
|
H. Veldcamp, Ecological studies with the chemostat, Advances in Microbial Ecology, 1 (1977), 59-95.
|
[32]
|
P. Waltman, Competition models in population biology, CBMS-NSF Regional Conference Series in Applied Mathematics, 45 Society for Industrial and Applied Mathematics, Philadelphia, 1983.
doi: 10.1137/1.9781611970258.
|
[33]
|
P. Waltman, Coexistence in chemostat-like model, Rocky Mountain Journal of Mathematics, 20 (1990), 777-807.
doi: 10.1216/rmjm/1181073042.
|
[34]
|
P. Waltman, S. P. Hubbel and S. B. Hsu, Theoretical and experimental investigations of microbial competition in continuous culture, Modeling and Differential Equations in Biology (Conf. , southern Illinois Univ. Carbonadle, Ⅲ. , 1978), (1980) pp. 107-152. Lecture Notes in Pure and Appl. Math. , 58, Dekker, New York.
|