• Previous Article
    Corrigendum to "On small data scattering of Hartree equations with short-range interaction" [Comm. Pure. Appl. Anal., 15 (2016), 1809-1823]
  • CPAA Home
  • This Issue
  • Next Article
    Dynamics of some stochastic chemostat models with multiplicative noise
September  2017, 16(5): 1915-1938. doi: 10.3934/cpaa.2017093

Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case

1. 

Department of Mathematics, Kyoto University of Education, 1 Fujinomori, Fukakusa, Fushimi-ku, Kyoto, 612-8522, Japan

2. 

Division of Mathematical Sciences, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan

3. 

Department of Engineering for Production and Environment, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 790-8577, Japan

* Corresponding author: yoshikawa@oita-u.ac.jp

Received  October 2016 Revised  April 2017 Published  May 2017

Fund Project: The authors are supported by JSPS KAKENHI Grant-in-Aid for Scientific Research(C), Grant Numbers 26400164 for TF and 16K05234 for SY.

The structure-preserving finite difference schemes for the one dimensional Cahn-Hilliard equation with dynamic boundary conditions are studied. A dynamic boundary condition is a sort of transmission condition that includes the time derivative, namely, it is itself a time evolution equation. The Cahn-Hilliard equation with dynamic boundary conditions is well-treated from various viewpoints. The standard type consists of a dynamic boundary condition for the order parameter, and the Neumann boundary condition for the chemical potential. Recently, Goldstein-Miranville-Schimperna proposed a new type of dynamic boundary condition for the Cahn-Hilliard equation. In this article, numerical schemes for the problem with these two kinds of dynamic boundary conditions are introduced. In addition, a mathematical result on the existence of a solution for the scheme with an error estimate is also obtained for the former boundary condition.

Citation: Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093
References:
[1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.   Google Scholar
[2]

L. CherfilsS. Gatti and A. Miranville, A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.), 189 (2013), 604-636.  doi: 10.1007/s10958-013-1211-2.  Google Scholar

[3]

L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.  doi: 10.1007/s00211-014-0618-0.  Google Scholar

[4]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dynam. Sys., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[5]

P. Colli and T. Fukao, Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429 (2015), 1190-1213.  doi: 10.1016/j.jmaa.2015.04.057.  Google Scholar

[6]

P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413-433.  doi: 10.1016/j.na.2015.07.011.  Google Scholar

[7]

P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems, J. Differential Equations, 260 (2016), 6930-6959.  doi: 10.1016/j.jde.2016.01.032.  Google Scholar

[8]

P. ColliG. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994.  doi: 10.1016/j.jmaa.2014.05.008.  Google Scholar

[9]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325.  doi: 10.1515/anona-2015-0035.  Google Scholar

[10]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225.  doi: 10.1007/s00245-015-9299-z.  Google Scholar

[11]

T. Fukao, Convergence of Cahn-Hilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1-21.  doi: 10.3233/ASY-161373.  Google Scholar

[12]

T. Fukao, Cahn-Hilliard approach to some degenerate parabolic equations with dynamic boundary conditions, 282-291 in System Modeling and Optimization, Springer, 2016. doi: 10.1007/978-3-319-55795-3_26.  Google Scholar

[13]

D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429.  Google Scholar

[14]

D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Numerical Analysis and Scientific Computing series, CRC Press/Taylor & Francis, 2010.  Google Scholar

[15]

G. GilardiA. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure. Appl. Anal., 8 (2009), 881-912.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[16]

G. GilardiA. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.  doi: 10.1007/s11401-010-0602-7.  Google Scholar

[17]

G. R. GoldsteinA. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754-766.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

[18]

B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.  doi: 10.1093/imanum/drw015.  Google Scholar

[19]

R. Racke and Songmu Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.   Google Scholar

[20]

Hao Wu and Songmu Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204 (2004), 511-531.  doi: 10.1016/j.jde.2004.05.004.  Google Scholar

[21]

Hao Wu and Songmu Zheng, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. S, 22 (2008), 1041-1063.  doi: 10.3934/dcds.2008.22.1041.  Google Scholar

[22]

S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, J. Comput. Appl. Math., 311 (2017), 394-413.  doi: 10.1016/j.cam.2016.08.008.  Google Scholar

[23]

S. Yoshikawa, An error estimate for structure-preserving finite difference scheme for the Falk model system of shape memory alloys, IMA J. Numer. Anal., 37 (2017), 477-504.  doi: 10.1093/imanum/drv072.  Google Scholar

show all references

References:
[1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.   Google Scholar
[2]

L. CherfilsS. Gatti and A. Miranville, A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.), 189 (2013), 604-636.  doi: 10.1007/s10958-013-1211-2.  Google Scholar

[3]

L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.  doi: 10.1007/s00211-014-0618-0.  Google Scholar

[4]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dynam. Sys., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[5]

P. Colli and T. Fukao, Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429 (2015), 1190-1213.  doi: 10.1016/j.jmaa.2015.04.057.  Google Scholar

[6]

P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413-433.  doi: 10.1016/j.na.2015.07.011.  Google Scholar

[7]

P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems, J. Differential Equations, 260 (2016), 6930-6959.  doi: 10.1016/j.jde.2016.01.032.  Google Scholar

[8]

P. ColliG. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994.  doi: 10.1016/j.jmaa.2014.05.008.  Google Scholar

[9]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325.  doi: 10.1515/anona-2015-0035.  Google Scholar

[10]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225.  doi: 10.1007/s00245-015-9299-z.  Google Scholar

[11]

T. Fukao, Convergence of Cahn-Hilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1-21.  doi: 10.3233/ASY-161373.  Google Scholar

[12]

T. Fukao, Cahn-Hilliard approach to some degenerate parabolic equations with dynamic boundary conditions, 282-291 in System Modeling and Optimization, Springer, 2016. doi: 10.1007/978-3-319-55795-3_26.  Google Scholar

[13]

D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429.  Google Scholar

[14]

D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Numerical Analysis and Scientific Computing series, CRC Press/Taylor & Francis, 2010.  Google Scholar

[15]

G. GilardiA. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure. Appl. Anal., 8 (2009), 881-912.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[16]

G. GilardiA. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.  doi: 10.1007/s11401-010-0602-7.  Google Scholar

[17]

G. R. GoldsteinA. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754-766.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

[18]

B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.  doi: 10.1093/imanum/drw015.  Google Scholar

[19]

R. Racke and Songmu Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.   Google Scholar

[20]

Hao Wu and Songmu Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204 (2004), 511-531.  doi: 10.1016/j.jde.2004.05.004.  Google Scholar

[21]

Hao Wu and Songmu Zheng, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. S, 22 (2008), 1041-1063.  doi: 10.3934/dcds.2008.22.1041.  Google Scholar

[22]

S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, J. Comput. Appl. Math., 311 (2017), 394-413.  doi: 10.1016/j.cam.2016.08.008.  Google Scholar

[23]

S. Yoshikawa, An error estimate for structure-preserving finite difference scheme for the Falk model system of shape memory alloys, IMA J. Numer. Anal., 37 (2017), 477-504.  doi: 10.1093/imanum/drv072.  Google Scholar

Figure 1.  Relationship between $x$ and $k$
Figure 2.  Discrete quantities $A_{1,d}^{(n)}$ and $M_d({{\mathit{\boldsymbol{U}}}^{\left( n \right)}})$
Figure 3.  Discrete quantities $A_{2,d}^{(n)}$ and $M_{2,d}^{(n)}$
Figure 4.  Case 1 for $\gamma =0.005$
Figure 5.  Case 1 for $\gamma =0.001$
Figure 6.  Case 1 for $\gamma =0.0005$
Figure 7.  Case 2 for $\gamma =0.005$
Figure 8.  Case 2 for $\gamma =0.001$
Figure 9.  Case 2 for $\gamma =0.0005$
[1]

Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206

[2]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[3]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[4]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[5]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[6]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[7]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[8]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[9]

Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1737-1747. doi: 10.3934/dcdsb.2014.19.1737

[10]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[11]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[12]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[13]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[14]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[15]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[16]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[17]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[18]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[19]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[20]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (83)
  • HTML views (67)
  • Cited by (3)

Other articles
by authors

[Back to Top]