Article Contents
Article Contents

# Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case

The authors are supported by JSPS KAKENHI Grant-in-Aid for Scientific Research(C), Grant Numbers 26400164 for TF and 16K05234 for SY.
• The structure-preserving finite difference schemes for the one dimensional Cahn-Hilliard equation with dynamic boundary conditions are studied. A dynamic boundary condition is a sort of transmission condition that includes the time derivative, namely, it is itself a time evolution equation. The Cahn-Hilliard equation with dynamic boundary conditions is well-treated from various viewpoints. The standard type consists of a dynamic boundary condition for the order parameter, and the Neumann boundary condition for the chemical potential. Recently, Goldstein-Miranville-Schimperna proposed a new type of dynamic boundary condition for the Cahn-Hilliard equation. In this article, numerical schemes for the problem with these two kinds of dynamic boundary conditions are introduced. In addition, a mathematical result on the existence of a solution for the scheme with an error estimate is also obtained for the former boundary condition.

Mathematics Subject Classification: Primary: 65N06; Secondary: 35K35.

 Citation:

• Figure 1.  Relationship between $x$ and $k$

Figure 2.  Discrete quantities $A_{1,d}^{(n)}$ and $M_d({{\mathit{\boldsymbol{U}}}^{\left( n \right)}})$

Figure 3.  Discrete quantities $A_{2,d}^{(n)}$ and $M_{2,d}^{(n)}$

Figure 4.  Case 1 for $\gamma =0.005$

Figure 5.  Case 1 for $\gamma =0.001$

Figure 6.  Case 1 for $\gamma =0.0005$

Figure 7.  Case 2 for $\gamma =0.005$

Figure 8.  Case 2 for $\gamma =0.001$

Figure 9.  Case 2 for $\gamma =0.0005$

•  [1] H. Brezis,  Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. [2] L. Cherfils, S. Gatti and A. Miranville, A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.), 189 (2013), 604-636.  doi: 10.1007/s10958-013-1211-2. [3] L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.  doi: 10.1007/s00211-014-0618-0. [4] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dynam. Sys., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511. [5] P. Colli and T. Fukao, Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429 (2015), 1190-1213.  doi: 10.1016/j.jmaa.2015.04.057. [6] P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413-433.  doi: 10.1016/j.na.2015.07.011. [7] P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems, J. Differential Equations, 260 (2016), 6930-6959.  doi: 10.1016/j.jde.2016.01.032. [8] P. Colli, G. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994.  doi: 10.1016/j.jmaa.2014.05.008. [9] P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325.  doi: 10.1515/anona-2015-0035. [10] P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225.  doi: 10.1007/s00245-015-9299-z. [11] T. Fukao, Convergence of Cahn-Hilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1-21.  doi: 10.3233/ASY-161373. [12] T. Fukao, Cahn-Hilliard approach to some degenerate parabolic equations with dynamic boundary conditions, 282-291 in System Modeling and Optimization, Springer, 2016. doi: 10.1007/978-3-319-55795-3_26. [13] D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429. [14] D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Numerical Analysis and Scientific Computing series, CRC Press/Taylor & Francis, 2010. [15] G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure. Appl. Anal., 8 (2009), 881-912.  doi: 10.3934/cpaa.2009.8.881. [16] G. Gilardi, A. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.  doi: 10.1007/s11401-010-0602-7. [17] G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754-766.  doi: 10.1016/j.physd.2010.12.007. [18] B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.  doi: 10.1093/imanum/drw015. [19] R. Racke and Songmu Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110. [20] Hao Wu and Songmu Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204 (2004), 511-531.  doi: 10.1016/j.jde.2004.05.004. [21] Hao Wu and Songmu Zheng, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. S, 22 (2008), 1041-1063.  doi: 10.3934/dcds.2008.22.1041. [22] S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, J. Comput. Appl. Math., 311 (2017), 394-413.  doi: 10.1016/j.cam.2016.08.008. [23] S. Yoshikawa, An error estimate for structure-preserving finite difference scheme for the Falk model system of shape memory alloys, IMA J. Numer. Anal., 37 (2017), 477-504.  doi: 10.1093/imanum/drv072.

Figures(9)