-
Previous Article
Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials
- CPAA Home
- This Issue
- Next Article
On a class of rotationally symmetric $p$-harmonic maps
1. | Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong |
2. | Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, Taiwan |
3. | Department of Mathematics, National University of Singapore, Singapore 119260, Singapore |
We give a classification of rotationally symmetric $p$-harmonic maps between some model spaces such as $\mathbb{R}^n$ and $\mathbb{H}^n$ by their asymptotic behaviors. Among others, we show that, when $p>2$ and $n≥q 2$, all rotationally symmetric $p$-harmonic maps from $\mathbb{R}^n$ to $\mathbb{H}^n$ have to blow up at a finite point, while all rotationally symmetric $p$-harmonic maps from $\mathbb{H}^n$ to $\mathbb{H}^n$ observe the trichotomy property, i.e. the map $y$ is the identity map, is bounded or blows up according as its initial value $y'(0)$ is equal to, less than or greater than one. Our sharp estimates imply and improve a number of existence and non-existence results of certain $p$-harmonic maps on noncompact manifolds.
References:
[1] |
C. N. Chen, L. F. Cheung, Y. S. Choi and C. K. Law,
On the blowup of heat flow for conformal 3-harmonic maps, Trans. Amer. Math. Soc., 354 (2002), 5087-5110.
doi: 10.1090/S0002-9947-02-03054-4. |
[2] |
C. N. Chen, L. F. Cheung, Y. S. Choi and C. K. Law,
Integrability of rotationally symmetric $n$-harmonic maps, J. Math. Anal. Appl., 327 (2007), 869-877.
doi: 10.1016/j.jmaa.2006.04.073. |
[3] |
Y. Chen, M. C. Hong and N. Hungerbühler,
Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35.
doi: 10.1007/BF02571698. |
[4] |
L. F. Cheung and C. K. Law,
An initial value approach to rotationally symmetric harmonic maps, J. Math. Anal. Appl., 289 (2004), 1-13.
doi: 10.1016/S0022-247X(03)00195-1. |
[5] |
L. F. Cheung, C. K. Law and M. C. Leung,
Bounded positive solutions of rotationally symmetric harmonic map equations, Diff. Integral Equations, 13 (2000), 1149-1188.
|
[6] |
L. F. Cheung, C. K. Law, M. C. Leung and J. B. McLeod,
Entire solutions of quasilinear differential equations corresponding to p-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 701-715.
doi: 10.1016/S0362-546X(97)00434-3. |
[7] |
R. Dal Passo, L. Giacomelli and S. Moll,
Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Cal. Var. P.D.E., 32 (2008), 533-554.
doi: 10.1007/s00526-007-0153-2. |
[8] |
A. Fardoun and R. Regbaoui,
Heat flow for $p$-harmoic maps with small initial data, Cal. Var., P.D.E., 16 (2003), 1-16.
doi: 10.1007/s005260100138. |
[9] |
R. Greene and H. Wu,
Function Theory on Manifolds Which Possess a Pole Lecture Notes in Math. 699 (1970), Springer-Verlag. |
[10] |
R. G. Iagar and S. Moll,
Rotationally symmetric $p$-harmonic maps from $D^2$ to $S^2$, J. Differential Equations, 254 (2013), 3928-3956.
doi: 10.1016/j.jde.2013.02.003. |
[11] |
M. C. Leung,
Asymptotic behavior of rotationally symmetric $p$-harmonic maps, Applicable Anal., 61 (1996), 1-15.
doi: 10.1080/00036819608840440. |
[12] |
M. C. Leung,
Positive solutions of second order quasilinear equations corresponding to $p$-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 717-733.
doi: 10.1016/S0362-546X(97)00435-5. |
[13] |
M. Misawa,
On the $p$-harmonic flow into spheres in the singular case, Nonlinear Anal., 50 (2002), 485-494.
doi: 10.1016/S0362-546X(01)00755-6. |
[14] |
A. Ratto and M. Rigoli,
On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Diff. Eqns., 101 (1993), 15--27.
doi: 10.1006/jdeq.1993.1002. |
show all references
References:
[1] |
C. N. Chen, L. F. Cheung, Y. S. Choi and C. K. Law,
On the blowup of heat flow for conformal 3-harmonic maps, Trans. Amer. Math. Soc., 354 (2002), 5087-5110.
doi: 10.1090/S0002-9947-02-03054-4. |
[2] |
C. N. Chen, L. F. Cheung, Y. S. Choi and C. K. Law,
Integrability of rotationally symmetric $n$-harmonic maps, J. Math. Anal. Appl., 327 (2007), 869-877.
doi: 10.1016/j.jmaa.2006.04.073. |
[3] |
Y. Chen, M. C. Hong and N. Hungerbühler,
Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35.
doi: 10.1007/BF02571698. |
[4] |
L. F. Cheung and C. K. Law,
An initial value approach to rotationally symmetric harmonic maps, J. Math. Anal. Appl., 289 (2004), 1-13.
doi: 10.1016/S0022-247X(03)00195-1. |
[5] |
L. F. Cheung, C. K. Law and M. C. Leung,
Bounded positive solutions of rotationally symmetric harmonic map equations, Diff. Integral Equations, 13 (2000), 1149-1188.
|
[6] |
L. F. Cheung, C. K. Law, M. C. Leung and J. B. McLeod,
Entire solutions of quasilinear differential equations corresponding to p-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 701-715.
doi: 10.1016/S0362-546X(97)00434-3. |
[7] |
R. Dal Passo, L. Giacomelli and S. Moll,
Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Cal. Var. P.D.E., 32 (2008), 533-554.
doi: 10.1007/s00526-007-0153-2. |
[8] |
A. Fardoun and R. Regbaoui,
Heat flow for $p$-harmoic maps with small initial data, Cal. Var., P.D.E., 16 (2003), 1-16.
doi: 10.1007/s005260100138. |
[9] |
R. Greene and H. Wu,
Function Theory on Manifolds Which Possess a Pole Lecture Notes in Math. 699 (1970), Springer-Verlag. |
[10] |
R. G. Iagar and S. Moll,
Rotationally symmetric $p$-harmonic maps from $D^2$ to $S^2$, J. Differential Equations, 254 (2013), 3928-3956.
doi: 10.1016/j.jde.2013.02.003. |
[11] |
M. C. Leung,
Asymptotic behavior of rotationally symmetric $p$-harmonic maps, Applicable Anal., 61 (1996), 1-15.
doi: 10.1080/00036819608840440. |
[12] |
M. C. Leung,
Positive solutions of second order quasilinear equations corresponding to $p$-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 717-733.
doi: 10.1016/S0362-546X(97)00435-5. |
[13] |
M. Misawa,
On the $p$-harmonic flow into spheres in the singular case, Nonlinear Anal., 50 (2002), 485-494.
doi: 10.1016/S0362-546X(01)00755-6. |
[14] |
A. Ratto and M. Rigoli,
On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Diff. Eqns., 101 (1993), 15--27.
doi: 10.1006/jdeq.1993.1002. |
[1] |
Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure and Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107 |
[2] |
Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247 |
[3] |
Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799 |
[4] |
Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170 |
[5] |
Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991 |
[6] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[7] |
Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483 |
[8] |
Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040 |
[9] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[10] |
Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure and Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121 |
[11] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[12] |
Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure and Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475 |
[13] |
Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266 |
[14] |
José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14 |
[15] |
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 |
[16] |
Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137 |
[17] |
Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779 |
[18] |
J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133 |
[19] |
Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019 |
[20] |
Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]