November  2017, 16(6): 1957-1975. doi: 10.3934/cpaa.2017096

Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials

School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China

* Corresponding author

Received  September 2016 Revised  April 2017 Published  July 2017

Fund Project: The authors would like to thank the referees for their suggestions of this work. The paper is supported by the fund from NSFC (No.11601139)

This paper is concerned with the following nonlinear Schrödinger equations with magnetic potentials

$\begin{equation}\label{0} \Bigl(\frac{\nabla}{i}-α A(|x|)\Bigl)^{2}u+(1+α V(|x|))u=|u|^{p-2}u,\,\,u∈ H^{1}(\mathbb{R}^{N},\mathbb{C}),\ \ \ \ \ \ \ \ \ \ \left( 0.1 \right) \end{equation}$

where $2<p<\frac{2N}{N-2}$ if $N≥q 3$ and $2<p<+∞$ if $N=2$. $α$ can be regarded as a parameter. $A(|x|)=(A_{1}(|x|),A_{2}(|x|),···,A_{N}(|x|))$ is a magnetic field satisfying that $A_{j}(|x|)>0(j=1,...,N)$ is a real $C^{1}$ bounded function on $\mathbb{R}^{N}$ and $V(|x|)>0$ is a real continuous electric potential. Under some decaying conditions of both electric and magnetic potentials which are given in section 1, we prove that the equation has multiple complex-valued solutions by applying the finite reduction method.

Citation: Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096
References:
[1]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[2]

T. BartschE. N. Dancer and S. Peng, On multi-bump semiclassical bound states of nonlinear Schrödinger euqations with electromagnetic fields, Adv. Differential Equations, 7 (2006), 781-812.   Google Scholar

[3]

S. Cingolani and M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation, Nonlinearity, 22 (2009), 2309-2331.  doi: 10.1088/0951-7715/22/9/013.  Google Scholar

[4]

S. CingolaniL. Jeanjean and S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var., 15 (2009), 653-675.  doi: 10.1051/cocv:2008055.  Google Scholar

[5]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[6]

D. CaoE. S. Noussair and S. Yan, Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 73-111.  doi: 10.1016/S0294-1449(99)80021-3.  Google Scholar

[7]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh. Sect. A, (1999), 235-264.  doi: 10.1017/S030821050002134X.  Google Scholar

[8]

J. Cosmo and J. Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations, 259 (2015), 596-627.  doi: 10.1016/j.jde.2015.02.016.  Google Scholar

[9]

S. Cingolani and S. Secchi, Semiclassical limit for nonlinear Schrödinger equations with electromagenetic fields, J. Math. Anal. Appl., 275 (2002), 108-130.  doi: 10.1016/S0022-247X(02)00278-0.  Google Scholar

[10]

S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magenetic potentials having polynomial growths J. Math. Phys. , 46 (2005), 053503, 19 pp. doi: 10.1063/1.1874333.  Google Scholar

[11]

D. Cao and Z. Tang, Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 222 (2006), 381-424.  doi: 10.1016/j.jde.2005.06.027.  Google Scholar

[12]

Y. Ding and X. Liu, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013), 51-82.  doi: 10.1007/s00229-011-0530-1.  Google Scholar

[13]

Y. Ding and Z. Wang, Bound states of nonlinear Schrödinger equations with magnetic fields, Annali di Matematica, 190 (2011), 427-451.  doi: 10.1007/s10231-010-0157-y.  Google Scholar

[14]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820.  doi: 10.1080/03605309608821208.  Google Scholar

[15]

K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagenetic fields, Nonlinear Anal., 41 (2000), 763-778.  doi: 10.1016/S0362-546X(98)00308-3.  Google Scholar

[16]

M. K. Kwong, Uniqueness of the positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[17]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000), 899-928.   Google Scholar

[18]

W. Long and S. Peng, Multiple positive solutions for a type of nonlinear Schrödinger equations, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 16 (2016), 603-623.   Google Scholar

[19]

G. LiS. Peng and C. Wang, Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 251 (2011), 3500-3521.  doi: 10.1016/j.jde.2011.08.038.  Google Scholar

[20]

W. Liu, Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in $\mathbb{R}^{3}$, Math. Meth. Appl. Sci., 39 (2016), 1452-1479.  doi: 10.1002/mma.3581.  Google Scholar

[21]

W. Liu and C. Wang, Infinitely many solutions for the nonlinear Schrödinger equations with magnetic potentials in $\mathbb{R}^{N}$ J. Math. Phys. , 54 (2013), 121508, 23pp. doi: 10.1063/1.4851756.  Google Scholar

[22]

W. Liu and C. Wang, Multi-peak solutions of a nonlinear Schrödinger equation with magnetic fields, Adv. Nonlinear Stud., 14 (2014), 951-975.  doi: 10.1515/ans-2014-0408.  Google Scholar

[23]

W. Liu and C. Wang, Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields, Discrete Contin. Dyn. Syst. A, 36 (2016), 7081-7115.  doi: 10.3934/dcds.2016109.  Google Scholar

[24]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.  Google Scholar

[25]

E. S. Noussair and S. Yan, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc., 76 (1998), 427-452.  doi: 10.1112/S0024611598000148.  Google Scholar

[26]

M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[27]

S. Shirai, Multi-bump solutions to a nonlinear Schrödinger equation with steep magnetic wells J. Math. Phys. , 56(2015), 091510, 19pp. doi: 10.1063/1.4930247.  Google Scholar

[28]

M. Squassina, Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscripta Math., 130 (2009), 461-494.  doi: 10.1007/s00229-009-0307-y.  Google Scholar

[29]

D. Salazar, Vortex-type solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 66 (2015), 663-675.  doi: 10.1007/s00033-014-0412-y.  Google Scholar

[30]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139. Springer-Verlag, New York, Berlin, Heidelberg, 1999.  Google Scholar

[31]

J. Wei and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in $\mathbb{R}^{N}$, Calc. Var. Partial Differential Equations, 37 (2010), 423-439.  doi: 10.1007/s00526-009-0270-1.  Google Scholar

[32]

J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$, J. Funct. Anal., 258 (2010), 3048-3081.  doi: 10.1016/j.jfa.2009.12.008.  Google Scholar

[33]

M. Yang and Y. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403 (2013), 680-694.  doi: 10.1016/j.jmaa.2013.02.062.  Google Scholar

show all references

References:
[1]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[2]

T. BartschE. N. Dancer and S. Peng, On multi-bump semiclassical bound states of nonlinear Schrödinger euqations with electromagnetic fields, Adv. Differential Equations, 7 (2006), 781-812.   Google Scholar

[3]

S. Cingolani and M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation, Nonlinearity, 22 (2009), 2309-2331.  doi: 10.1088/0951-7715/22/9/013.  Google Scholar

[4]

S. CingolaniL. Jeanjean and S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var., 15 (2009), 653-675.  doi: 10.1051/cocv:2008055.  Google Scholar

[5]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[6]

D. CaoE. S. Noussair and S. Yan, Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 73-111.  doi: 10.1016/S0294-1449(99)80021-3.  Google Scholar

[7]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh. Sect. A, (1999), 235-264.  doi: 10.1017/S030821050002134X.  Google Scholar

[8]

J. Cosmo and J. Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations, 259 (2015), 596-627.  doi: 10.1016/j.jde.2015.02.016.  Google Scholar

[9]

S. Cingolani and S. Secchi, Semiclassical limit for nonlinear Schrödinger equations with electromagenetic fields, J. Math. Anal. Appl., 275 (2002), 108-130.  doi: 10.1016/S0022-247X(02)00278-0.  Google Scholar

[10]

S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magenetic potentials having polynomial growths J. Math. Phys. , 46 (2005), 053503, 19 pp. doi: 10.1063/1.1874333.  Google Scholar

[11]

D. Cao and Z. Tang, Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 222 (2006), 381-424.  doi: 10.1016/j.jde.2005.06.027.  Google Scholar

[12]

Y. Ding and X. Liu, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013), 51-82.  doi: 10.1007/s00229-011-0530-1.  Google Scholar

[13]

Y. Ding and Z. Wang, Bound states of nonlinear Schrödinger equations with magnetic fields, Annali di Matematica, 190 (2011), 427-451.  doi: 10.1007/s10231-010-0157-y.  Google Scholar

[14]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820.  doi: 10.1080/03605309608821208.  Google Scholar

[15]

K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagenetic fields, Nonlinear Anal., 41 (2000), 763-778.  doi: 10.1016/S0362-546X(98)00308-3.  Google Scholar

[16]

M. K. Kwong, Uniqueness of the positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[17]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000), 899-928.   Google Scholar

[18]

W. Long and S. Peng, Multiple positive solutions for a type of nonlinear Schrödinger equations, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 16 (2016), 603-623.   Google Scholar

[19]

G. LiS. Peng and C. Wang, Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 251 (2011), 3500-3521.  doi: 10.1016/j.jde.2011.08.038.  Google Scholar

[20]

W. Liu, Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in $\mathbb{R}^{3}$, Math. Meth. Appl. Sci., 39 (2016), 1452-1479.  doi: 10.1002/mma.3581.  Google Scholar

[21]

W. Liu and C. Wang, Infinitely many solutions for the nonlinear Schrödinger equations with magnetic potentials in $\mathbb{R}^{N}$ J. Math. Phys. , 54 (2013), 121508, 23pp. doi: 10.1063/1.4851756.  Google Scholar

[22]

W. Liu and C. Wang, Multi-peak solutions of a nonlinear Schrödinger equation with magnetic fields, Adv. Nonlinear Stud., 14 (2014), 951-975.  doi: 10.1515/ans-2014-0408.  Google Scholar

[23]

W. Liu and C. Wang, Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields, Discrete Contin. Dyn. Syst. A, 36 (2016), 7081-7115.  doi: 10.3934/dcds.2016109.  Google Scholar

[24]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.  Google Scholar

[25]

E. S. Noussair and S. Yan, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc., 76 (1998), 427-452.  doi: 10.1112/S0024611598000148.  Google Scholar

[26]

M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[27]

S. Shirai, Multi-bump solutions to a nonlinear Schrödinger equation with steep magnetic wells J. Math. Phys. , 56(2015), 091510, 19pp. doi: 10.1063/1.4930247.  Google Scholar

[28]

M. Squassina, Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscripta Math., 130 (2009), 461-494.  doi: 10.1007/s00229-009-0307-y.  Google Scholar

[29]

D. Salazar, Vortex-type solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 66 (2015), 663-675.  doi: 10.1007/s00033-014-0412-y.  Google Scholar

[30]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139. Springer-Verlag, New York, Berlin, Heidelberg, 1999.  Google Scholar

[31]

J. Wei and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in $\mathbb{R}^{N}$, Calc. Var. Partial Differential Equations, 37 (2010), 423-439.  doi: 10.1007/s00526-009-0270-1.  Google Scholar

[32]

J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$, J. Funct. Anal., 258 (2010), 3048-3081.  doi: 10.1016/j.jfa.2009.12.008.  Google Scholar

[33]

M. Yang and Y. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403 (2013), 680-694.  doi: 10.1016/j.jmaa.2013.02.062.  Google Scholar

[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[3]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[4]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[5]

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811

[6]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure & Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[7]

Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems & Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033

[8]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055

[9]

Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

[10]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[11]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[12]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[13]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431

[14]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[15]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[16]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[17]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[18]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[19]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[20]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (33)
  • HTML views (2)
  • Cited by (1)

Other articles
by authors

[Back to Top]