\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials

  • * Corresponding author

    * Corresponding author

The authors would like to thank the referees for their suggestions of this work. The paper is supported by the fund from NSFC (No.11601139)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the following nonlinear Schrödinger equations with magnetic potentials

    $\begin{equation}\label{0} \Bigl(\frac{\nabla}{i}-α A(|x|)\Bigl)^{2}u+(1+α V(|x|))u=|u|^{p-2}u,\,\,u∈ H^{1}(\mathbb{R}^{N},\mathbb{C}),\ \ \ \ \ \ \ \ \ \ \left( 0.1 \right) \end{equation}$

    where $2<p<\frac{2N}{N-2}$ if $N≥q 3$ and $2<p<+∞$ if $N=2$. $α$ can be regarded as a parameter. $A(|x|)=(A_{1}(|x|),A_{2}(|x|),···,A_{N}(|x|))$ is a magnetic field satisfying that $A_{j}(|x|)>0(j=1,...,N)$ is a real $C^{1}$ bounded function on $\mathbb{R}^{N}$ and $V(|x|)>0$ is a real continuous electric potential. Under some decaying conditions of both electric and magnetic potentials which are given in section 1, we prove that the equation has multiple complex-valued solutions by applying the finite reduction method.

    Mathematics Subject Classification: Primary: 35J10, 35B99; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Ambrosetti , E. Colorado  and  D. Ruiz , Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007) , 85-112.  doi: 10.1007/s00526-006-0079-0.
      T. Bartsch , E. N. Dancer  and  S. Peng , On multi-bump semiclassical bound states of nonlinear Schrödinger euqations with electromagnetic fields, Adv. Differential Equations, 7 (2006) , 781-812. 
      S. Cingolani  and  M. Clapp , Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation, Nonlinearity, 22 (2009) , 2309-2331.  doi: 10.1088/0951-7715/22/9/013.
      S. Cingolani , L. Jeanjean  and  S. Secchi , Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var., 15 (2009) , 653-675.  doi: 10.1051/cocv:2008055.
      D. Cao  and  E. S. Noussair , Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$ , Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996) , 567-588.  doi: 10.1016/S0294-1449(16)30115-9.
      D. Cao , E. S. Noussair  and  S. Yan , Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998) , 73-111.  doi: 10.1016/S0294-1449(99)80021-3.
      D. Cao , E. S. Noussair  and  S. Yan , Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh. Sect. A, (1999) , 235-264.  doi: 10.1017/S030821050002134X.
      J. Cosmo  and  J. Schaftingen , Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations, 259 (2015) , 596-627.  doi: 10.1016/j.jde.2015.02.016.
      S. Cingolani  and  S. Secchi , Semiclassical limit for nonlinear Schrödinger equations with electromagenetic fields, J. Math. Anal. Appl., 275 (2002) , 108-130.  doi: 10.1016/S0022-247X(02)00278-0.
      S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magenetic potentials having polynomial growths J. Math. Phys. , 46 (2005), 053503, 19 pp. doi: 10.1063/1.1874333.
      D. Cao  and  Z. Tang , Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 222 (2006) , 381-424.  doi: 10.1016/j.jde.2005.06.027.
      Y. Ding  and  X. Liu , Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013) , 51-82.  doi: 10.1007/s00229-011-0530-1.
      Y. Ding  and  Z. Wang , Bound states of nonlinear Schrödinger equations with magnetic fields, Annali di Matematica, 190 (2011) , 427-451.  doi: 10.1007/s10231-010-0157-y.
      C. Gui , Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996) , 787-820.  doi: 10.1080/03605309608821208.
      K. Kurata , Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagenetic fields, Nonlinear Anal., 41 (2000) , 763-778.  doi: 10.1016/S0362-546X(98)00308-3.
      M. K. Kwong , Uniqueness of the positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{n}$ , Arch. Rational Mech. Anal., 105 (1989) , 243-266.  doi: 10.1007/BF00251502.
      X. Kang  and  J. Wei , On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000) , 899-928. 
      W. Long  and  S. Peng , Multiple positive solutions for a type of nonlinear Schrödinger equations, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 16 (2016) , 603-623. 
      G. Li , S. Peng  and  C. Wang , Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 251 (2011) , 3500-3521.  doi: 10.1016/j.jde.2011.08.038.
      W. Liu , Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in $\mathbb{R}^{3}$ , Math. Meth. Appl. Sci., 39 (2016) , 1452-1479.  doi: 10.1002/mma.3581.
      W. Liu and C. Wang, Infinitely many solutions for the nonlinear Schrödinger equations with magnetic potentials in $\mathbb{R}^{N}$ J. Math. Phys. , 54 (2013), 121508, 23pp. doi: 10.1063/1.4851756.
      W. Liu  and  C. Wang , Multi-peak solutions of a nonlinear Schrödinger equation with magnetic fields, Adv. Nonlinear Stud., 14 (2014) , 951-975.  doi: 10.1515/ans-2014-0408.
      W. Liu  and  C. Wang , Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields, Discrete Contin. Dyn. Syst. A, 36 (2016) , 7081-7115.  doi: 10.3934/dcds.2016109.
      E. S. Noussair  and  S. Yan , On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000) , 213-227.  doi: 10.1112/S002461070000898X.
      E. S. Noussair  and  S. Yan , The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc., 76 (1998) , 427-452.  doi: 10.1112/S0024611598000148.
      M. Del Pino  and  P. L. Felmer , Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998) , 127-149.  doi: 10.1016/S0294-1449(97)89296-7.
      S. Shirai, Multi-bump solutions to a nonlinear Schrödinger equation with steep magnetic wells J. Math. Phys. , 56(2015), 091510, 19pp. doi: 10.1063/1.4930247.
      M. Squassina , Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscripta Math., 130 (2009) , 461-494.  doi: 10.1007/s00229-009-0307-y.
      D. Salazar , Vortex-type solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 66 (2015) , 663-675.  doi: 10.1007/s00033-014-0412-y.
      C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139. Springer-Verlag, New York, Berlin, Heidelberg, 1999.
      J. Wei  and  S. Yan , Infinitely many positive solutions for the nonlinear Schrödinger equations in $\mathbb{R}^{N}$ , Calc. Var. Partial Differential Equations, 37 (2010) , 423-439.  doi: 10.1007/s00526-009-0270-1.
      J. Wei  and  S. Yan , Infinitely many solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$ , J. Funct. Anal., 258 (2010) , 3048-3081.  doi: 10.1016/j.jfa.2009.12.008.
      M. Yang  and  Y. Wei , Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403 (2013) , 680-694.  doi: 10.1016/j.jmaa.2013.02.062.
  • 加载中
SHARE

Article Metrics

HTML views(111) PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return