We study the Green function for the stationary Stokes system with bounded measurable coefficients in a bounded Lipschitz domain $Ω\subset \mathbb{R}^n$, $n≥ 3$. We construct the Green function in $Ω$ under the condition $(\bf{A1})$ that weak solutions of the system enjoy interior Hölder continuity. We also prove that $(\bf{A1})$ holds, for example, when the coefficients are $\mathrm{VMO}$. Moreover, we obtain the global pointwise estimate for the Green function under the additional assumption $(\bf{A2})$ that weak solutions of Dirichlet problems are locally bounded up to the boundary of the domain. By proving a priori $L^q$-estimates for Stokes systems with $\mathrm{BMO}$ coefficients on a Reifenberg domain, we verify that $(\bf{A2})$ is satisfied when the coefficients are $\mathrm{VMO}$ and $Ω$ is a bounded $C^1$ domain.
Citation: |
Gabriel Acosta
, Ricardo G. Durán
and Marí a A. Muschietti
, Solutions of the divergence operator on John domains, Adv. Math., 206 (2006)
, 373-401.
doi: 10.1016/j.aim.2005.09.004.![]() ![]() ![]() |
|
Hiroaki Aikawa,
Martin Boundary and Boundary {H}arnack Principle for Non-smooth Domains Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc. , Providence, RI, 2005.
doi: 10.1090/trans2/215/03.![]() ![]() ![]() |
|
Sun-Sig Byun
and Lihe Wang
, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004)
, 1283-1310.
doi: 10.1002/cpa.20037.![]() ![]() ![]() |
|
TongKeun Chang
and Hi Jun Choe
, Estimates of the Green's functions for the elasto-static equations and Stokes equations in a three dimensional Lipschitz domain, Potential Anal., 30 (2009)
, 85-99.
doi: 10.1007/s11118-008-9107-3.![]() ![]() ![]() |
|
Jongkeun Choi
and Seick Kim
, Neumann functions for second order elliptic systems with measurable coefficients, Trans. Amer. Math. Soc., 365 (2013)
, 6283-6307.
doi: 10.1090/S0002-9947-2013-05886-2.![]() ![]() ![]() |
|
Georg Dolzmann
and Stefan. Müller
, Estimates for Green's matrices of elliptic systems by $L^p$ theory, Manuscripta Math., 88 (1995)
, 261-273.
doi: 10.1007/BF02567822.![]() ![]() ![]() |
|
Hongjie Dong and Doyoon Kim, $L_q$ -estimates for stationary Stokes system with coefficients measurable in one direction, arXiv: 1604.02690v2.
![]() |
|
Hongjie Dong
and Doyoon Kim
, Higher order elliptic and parabolic systems with variably partially {BMO} coefficients in regular and irregular domains, J. Funct. Anal., 261 (2011)
, 3279-3327.
doi: 10.1016/j.jfa.2011.08.001.![]() ![]() ![]() |
|
Hongjie Dong and Doyoon Kim, The Conormal Derivative Problem for Higher Order Elliptic Systems with Irregular Coefficients volume 581 of Contemp. Math. Amer. Math. Soc. , Providence, RI, 2012.
doi: 10.1090/conm/581/11534.![]() ![]() ![]() |
|
Martin Fuchs
, The Green matrix for strongly elliptic systems of second order with continuous coefficients, Z. Anal. Anwendungen, 5 (1986)
, 507-531.
doi: 10.4171/ZAA/219.![]() ![]() ![]() |
|
Giovanni Paolo Galdi
, Christian G. Simader
and Hermann Sohr
, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl., 167 (1994)
, 147-163.
doi: 10.1007/BF01760332.![]() ![]() ![]() |
|
Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, volume 105 of Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 1983.
![]() ![]() |
|
Mariano Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1993.
![]() ![]() |
|
Mariano Giaquinta
and Giuseppe Modica
, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 330 (1992)
, 173-214.
![]() ![]() |
|
Michael Grüter
and Kjell-Ove Widman
, The Green function for uniformly elliptic equations, Manuscripta Math., 37 (1982)
, 303-342.
doi: 10.1007/BF01166225.![]() ![]() ![]() |
|
Steve Hofmann
and Seick Kim
, The Green function estimates for strongly elliptic systems of second order, Manuscripta math., 124 (2007)
, 139-172.
doi: 10.1007/s00229-007-0107-1.![]() ![]() ![]() |
|
Kyungkeun Kang
, On regularity of stationary Stokes and Navier-Stokes equations near boundary, J. Math. Fluid Mech., 6 (2004)
, 78-101.
doi: 10.1007/s00021-003-0084-3.![]() ![]() ![]() |
|
Kyungkeun Kang
and Seick Kim
, Global pointwise estimates for Green's matrix of second order elliptic systems, J. Differential Equations, 249 (2010)
, 2643-2662.
doi: 10.1016/j.jde.2010.05.017.![]() ![]() ![]() |
|
Carlos E. Kenig
and Tatiana Toro
, Harmonic measure on locally flat domains, Duke Math. J., 87 (1997)
, 509-551.
doi: 10.1215/S0012-7094-97-08717-2.![]() ![]() ![]() |
|
Nicolai V. Krylov
and Mikhail V. Safonov
, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980)
, 161-175.
![]() ![]() |
|
Walter Littman
, Guido Stampacchia
and Hans F. Weinberger
, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, 17 (1963)
, 43-77.
![]() ![]() |
|
Vladimir Gilelevich Maz'ya
and Jürgen Rossmann
, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains, Math. Nachr., 280 (2007)
, 751-793.
doi: 10.1002/mana.200610513.![]() ![]() ![]() |
|
Dorina Mitrea
and Irina Mitrea
, On the regularity of Green functions in Lipschitz domains, Comm. Partial Differential Equations, 36 (2011)
, 304-327.
doi: 10.1080/03605302.2010.489629.![]() ![]() ![]() |
|
Marius Mitrea and Matthew Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains,
Astérisque 344 (2012), ⅷ+241.
![]() ![]() |
|
Katharine A. Ott
, Seick Kim
and Russell Murray Brown
, The Green function for the mixed problem for the linear Stokes system in domains in the plane, Math. Nachr., 288 (2015)
, 452-464.
doi: 10.1002/mana.201300281.![]() ![]() ![]() |
|
Mikhail V. Safonov
, Harnack's inequality for elliptic equations and Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 96 (1980)
, 272-287.
![]() ![]() |