We prove Strichartz estimates found after adding regularity in the spherical coordinates for Schrödinger-like equations. The obtained estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages, which were obtained in [
Citation: |
Y. Cho
, Z. Guo
and S. Lee
, A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015)
, 799-815.
doi: 10.1007/s00208-014-1130-7.![]() ![]() ![]() |
|
Y. Cho
and S. Lee
, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013)
, 991-1020.
doi: 10.1512/iumj.2013.62.4970.![]() ![]() ![]() |
|
Y. Cho
, T. Ozawa
and S. Xia
, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011)
, 1121-1128.
doi: 10.3934/cpaa.2011.10.1121.![]() ![]() ![]() |
|
D. Fang
and C. Wang
, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011)
, 181-205.
doi: 10.1515/FORM.2011.009.![]() ![]() ![]() |
|
Z. Guo
, Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016)
, 1668-1686.
doi: 10.1088/0951-7715/29/5/1668.![]() ![]() ![]() |
|
Z. Guo
and Y. Wang
, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014)
, 1-38.
doi: 10.1007/s11854-014-0025-6.![]() ![]() ![]() |
|
J.-C. Jiang
, C. Wang
and X. Yu
, Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012)
, 1723-1752.
doi: 10.3934/cpaa.2012.11.1723.![]() ![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998)
, 955-980.
![]() ![]() |
|
J. Sterbenz
, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., ()
, 187-231.
doi: 10.1155/IMRN.2005.187.![]() ![]() ![]() |
|
R. S. Strichartz
, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977)
, 705-714.
![]() ![]() |