-
Previous Article
Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition
- CPAA Home
- This Issue
-
Next Article
Two-and multi-phase quadrature surfaces
Sharp Strichartz estimates in spherical coordinates
Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31,33501 Bielefeld, Germany |
We prove Strichartz estimates found after adding regularity in the spherical coordinates for Schrödinger-like equations. The obtained estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages, which were obtained in [
References:
[1] |
Y. Cho, Z. Guo and S. Lee,
A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015), 799-815.
doi: 10.1007/s00208-014-1130-7. |
[2] |
Y. Cho and S. Lee,
Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
Y. Cho, T. Ozawa and S. Xia,
Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.
doi: 10.3934/cpaa.2011.10.1121. |
[4] |
D. Fang and C. Wang,
Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.
doi: 10.1515/FORM.2011.009. |
[5] |
Z. Guo,
Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016), 1668-1686.
doi: 10.1088/0951-7715/29/5/1668. |
[6] |
Z. Guo and Y. Wang,
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[7] |
J.-C. Jiang, C. Wang and X. Yu,
Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.
doi: 10.3934/cpaa.2012.11.1723. |
[8] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[9] |
J. Sterbenz,
Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., (), 187-231.
doi: 10.1155/IMRN.2005.187. |
[10] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
|
show all references
References:
[1] |
Y. Cho, Z. Guo and S. Lee,
A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015), 799-815.
doi: 10.1007/s00208-014-1130-7. |
[2] |
Y. Cho and S. Lee,
Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
Y. Cho, T. Ozawa and S. Xia,
Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.
doi: 10.3934/cpaa.2011.10.1121. |
[4] |
D. Fang and C. Wang,
Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.
doi: 10.1515/FORM.2011.009. |
[5] |
Z. Guo,
Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016), 1668-1686.
doi: 10.1088/0951-7715/29/5/1668. |
[6] |
Z. Guo and Y. Wang,
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[7] |
J.-C. Jiang, C. Wang and X. Yu,
Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.
doi: 10.3934/cpaa.2012.11.1723. |
[8] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[9] |
J. Sterbenz,
Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., (), 187-231.
doi: 10.1155/IMRN.2005.187. |
[10] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
|
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[3] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[4] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[5] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[6] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[7] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[8] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[9] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[10] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[11] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[12] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[13] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[14] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[15] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[16] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[17] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[18] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[19] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[20] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]