November  2017, 16(6): 2053-2068. doi: 10.3934/cpaa.2017101

Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition

Department of Mechanics and Mathematics Belarusian State University, Nezavisimosti avenue 4,220030 Minsk, Belarus

Received  December 2016 Revised  March 2017 Published  July 2017

Fund Project: This work is supported by the state program of fundamental research of Belarus, grant 1.2.03.1.

In this paper, we consider a semilinear parabolic equation with nonlinear nonlocal Neumann boundary condition and nonnegative initial datum. We first prove global existence result. We then give some criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data. Finally, we show that under certain conditions blow-up occurs only on the boundary.

Citation: Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101
References:
[1]

J. M. Arrieta and A. Rodrígues-Bernal, Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions, Comm. Partial Differential Equations, 29 (2004), 1127-1148.  doi: 10.1081/PDE-200033760.  Google Scholar

[2]

S. Carl and V. Lakshmikantham, Generalized quasilinearization method for reaction-diffusion equation under nonlinear and nonlocal flux conditions, J. Math. Anal. Appl., 271 (2002), 182-205.  doi: 10.1016/S0022-247X(02)00114-2.  Google Scholar

[3]

C. CortazarM. del Pino and M. Elgueta, On the short-time behaviour of the free boundary of a porous medium equation, Duke J. Math., 7 (1997), 133-149.  doi: 10.1215/S0012-7094-97-08706-8.  Google Scholar

[4]

Z. Cui and Z. Yang, Roles of weight functions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition, J. Math. Anal. Appl., 342 (2008), 559-570.  doi: 10.1016/j.jmaa.2007.11.055.  Google Scholar

[5]

Z. CuiZ. Yang and R. Zhang, Blow-up of solutions for nonlinear parabolic equation with nonlocal source and nonlocal boundary condition, Appl. Math. Comput., 224 (2013), 1-8.  doi: 10.1016/j.amc.2013.08.044.  Google Scholar

[6]

K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math., 50 (1992), 517-522.  doi: 10.1090/qam/1178431.  Google Scholar

[7]

K. Deng and C. L. Zhao, Blow-up for a parabolic system coupled in an equation and a boundary condition, Proc. Royal Soc. Edinb., 131A (2001), 1345-1355.  doi: 10.1017/S0308210500001426.  Google Scholar

[8]

Z. B. Fang and J. Zhang, Global existence and blow-up properties of solutions for porous medium equation with nonlinear memory and weighted nonlocal boundary condition, Z. Angew. Math. Phys., 66 (2015), 67-81.  doi: 10.1007/s00033-013-0382-5.  Google Scholar

[9]

A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math., 44 (1986), 401-407.  doi: 10.1090/qam/860893.  Google Scholar

[10]

Y. Gao and W. Gao, Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Appl. Anal., 90 (2011), 799-809.  doi: 10.1080/00036811.2010.511191.  Google Scholar

[11]

A. Gladkov, Initial boundary value problem for a semilinear parabolic equation with absorption and nonlinear nonlocal boundary condition, preprint, arXiv: 1602.05018. Google Scholar

[12]

A. Gladkov and M. Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition, Nonlinear Anal., 74 (2011), 4573-4580.  doi: 10.1016/j.na.2011.04.027.  Google Scholar

[13]

A. Gladkov and T. Kavitova, Blow-up problem for semilinear heat equation with nonlinear nonlocal boundary condition, Appl. Anal., 95 (2016), 1974-1988.  doi: 10.1080/00036811.2015.1080353.  Google Scholar

[14]

A. Gladkov and K. I. Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl., 338 (2008), 264-273.  doi: 10.1016/j.jmaa.2007.05.028.  Google Scholar

[15]

A. Gladkov and A. Nikitin, On the existence of global solutions of a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions, Differential Equations, 52 (2016), 467-482.  doi: 10.1134/S0012266116040078.  Google Scholar

[16]

B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Diff. Integral Equat., 9 (1996), 891-901.   Google Scholar

[17]

B. Hu and H. M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135.  doi: 10.2307/2154944.  Google Scholar

[18]

C. S. Kahane, On the asymptotic behavior of solutions of parabolic equations, Czechoslovac Math. J., 33 (1983), 262-285.   Google Scholar

[19]

L. Kong and M. Wang, Global existence and blow-up of solutions to a parabolic system with nonlocal sources and boundaries, Science in China, Series A, 50 (2007), 1251-1266.  doi: 10.1007/s11425-007-0105-5.  Google Scholar

[20]

D. Liu and C. Mu, Blowup properties for a semilinear reaction-diffusion system with nonlinear nonlocal boundary conditions Abstr. Appl. Anal. 2010 (2010), Article ID 148035 17 pp. (electronic). doi: 10.1155/2010/148035.  Google Scholar

[21]

M. Marras and S. Vernier Piro, Reaction-diffusion problems under non-local boundary conditions with blow-up solutions Journal of Inequalities and Applications 167 (2014), 11 pp. (electronic). doi: 10.1186/1029-242X-2014-167.  Google Scholar

[22]

C. V. Pao, Asimptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math., 88 (1998), 225-238.  doi: 10.1016/S0377-0427(97)00215-X.  Google Scholar

[23]

Y. WangC. Mu and Z. Xiang, Blowup of solutions to a porous medium equation with nonlocal boundary condition, Appl. Math. Comput., 192 (2007), 579-585.  doi: 10.1016/j.amc.2007.03.036.  Google Scholar

[24]

L. Yang and C. Fan, Global existence and blow-up of solutions to a degenerate parabolic system with nonlocal sources and nonlocal boundaries, Monatshefte für Mathematik, 174 (2014), 493-510.  doi: 10.1007/s00605-013-0580-4.  Google Scholar

[25]

Z. Ye and X. Xu, Global existence and blow-up for a porous medium system with nonlocal boundary conditions and nonlocal sources, Nonlinear Anal., 82 (2013), 115-126.  doi: 10.1016/j.na.2013.01.004.  Google Scholar

[26]

H. M. Yin, On a class of parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl., 294 (2004), 712-728.  doi: 10.1016/j.jmaa.2004.03.021.  Google Scholar

[27]

S. Zheng and L. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal., 68 (2008), 2406-2416.  doi: 10.1016/j.na.2007.01.067.  Google Scholar

show all references

References:
[1]

J. M. Arrieta and A. Rodrígues-Bernal, Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions, Comm. Partial Differential Equations, 29 (2004), 1127-1148.  doi: 10.1081/PDE-200033760.  Google Scholar

[2]

S. Carl and V. Lakshmikantham, Generalized quasilinearization method for reaction-diffusion equation under nonlinear and nonlocal flux conditions, J. Math. Anal. Appl., 271 (2002), 182-205.  doi: 10.1016/S0022-247X(02)00114-2.  Google Scholar

[3]

C. CortazarM. del Pino and M. Elgueta, On the short-time behaviour of the free boundary of a porous medium equation, Duke J. Math., 7 (1997), 133-149.  doi: 10.1215/S0012-7094-97-08706-8.  Google Scholar

[4]

Z. Cui and Z. Yang, Roles of weight functions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition, J. Math. Anal. Appl., 342 (2008), 559-570.  doi: 10.1016/j.jmaa.2007.11.055.  Google Scholar

[5]

Z. CuiZ. Yang and R. Zhang, Blow-up of solutions for nonlinear parabolic equation with nonlocal source and nonlocal boundary condition, Appl. Math. Comput., 224 (2013), 1-8.  doi: 10.1016/j.amc.2013.08.044.  Google Scholar

[6]

K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math., 50 (1992), 517-522.  doi: 10.1090/qam/1178431.  Google Scholar

[7]

K. Deng and C. L. Zhao, Blow-up for a parabolic system coupled in an equation and a boundary condition, Proc. Royal Soc. Edinb., 131A (2001), 1345-1355.  doi: 10.1017/S0308210500001426.  Google Scholar

[8]

Z. B. Fang and J. Zhang, Global existence and blow-up properties of solutions for porous medium equation with nonlinear memory and weighted nonlocal boundary condition, Z. Angew. Math. Phys., 66 (2015), 67-81.  doi: 10.1007/s00033-013-0382-5.  Google Scholar

[9]

A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math., 44 (1986), 401-407.  doi: 10.1090/qam/860893.  Google Scholar

[10]

Y. Gao and W. Gao, Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Appl. Anal., 90 (2011), 799-809.  doi: 10.1080/00036811.2010.511191.  Google Scholar

[11]

A. Gladkov, Initial boundary value problem for a semilinear parabolic equation with absorption and nonlinear nonlocal boundary condition, preprint, arXiv: 1602.05018. Google Scholar

[12]

A. Gladkov and M. Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition, Nonlinear Anal., 74 (2011), 4573-4580.  doi: 10.1016/j.na.2011.04.027.  Google Scholar

[13]

A. Gladkov and T. Kavitova, Blow-up problem for semilinear heat equation with nonlinear nonlocal boundary condition, Appl. Anal., 95 (2016), 1974-1988.  doi: 10.1080/00036811.2015.1080353.  Google Scholar

[14]

A. Gladkov and K. I. Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl., 338 (2008), 264-273.  doi: 10.1016/j.jmaa.2007.05.028.  Google Scholar

[15]

A. Gladkov and A. Nikitin, On the existence of global solutions of a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions, Differential Equations, 52 (2016), 467-482.  doi: 10.1134/S0012266116040078.  Google Scholar

[16]

B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Diff. Integral Equat., 9 (1996), 891-901.   Google Scholar

[17]

B. Hu and H. M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135.  doi: 10.2307/2154944.  Google Scholar

[18]

C. S. Kahane, On the asymptotic behavior of solutions of parabolic equations, Czechoslovac Math. J., 33 (1983), 262-285.   Google Scholar

[19]

L. Kong and M. Wang, Global existence and blow-up of solutions to a parabolic system with nonlocal sources and boundaries, Science in China, Series A, 50 (2007), 1251-1266.  doi: 10.1007/s11425-007-0105-5.  Google Scholar

[20]

D. Liu and C. Mu, Blowup properties for a semilinear reaction-diffusion system with nonlinear nonlocal boundary conditions Abstr. Appl. Anal. 2010 (2010), Article ID 148035 17 pp. (electronic). doi: 10.1155/2010/148035.  Google Scholar

[21]

M. Marras and S. Vernier Piro, Reaction-diffusion problems under non-local boundary conditions with blow-up solutions Journal of Inequalities and Applications 167 (2014), 11 pp. (electronic). doi: 10.1186/1029-242X-2014-167.  Google Scholar

[22]

C. V. Pao, Asimptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math., 88 (1998), 225-238.  doi: 10.1016/S0377-0427(97)00215-X.  Google Scholar

[23]

Y. WangC. Mu and Z. Xiang, Blowup of solutions to a porous medium equation with nonlocal boundary condition, Appl. Math. Comput., 192 (2007), 579-585.  doi: 10.1016/j.amc.2007.03.036.  Google Scholar

[24]

L. Yang and C. Fan, Global existence and blow-up of solutions to a degenerate parabolic system with nonlocal sources and nonlocal boundaries, Monatshefte für Mathematik, 174 (2014), 493-510.  doi: 10.1007/s00605-013-0580-4.  Google Scholar

[25]

Z. Ye and X. Xu, Global existence and blow-up for a porous medium system with nonlocal boundary conditions and nonlocal sources, Nonlinear Anal., 82 (2013), 115-126.  doi: 10.1016/j.na.2013.01.004.  Google Scholar

[26]

H. M. Yin, On a class of parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl., 294 (2004), 712-728.  doi: 10.1016/j.jmaa.2004.03.021.  Google Scholar

[27]

S. Zheng and L. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal., 68 (2008), 2406-2416.  doi: 10.1016/j.na.2007.01.067.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (108)
  • HTML views (58)
  • Cited by (1)

Other articles
by authors

[Back to Top]